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Measurement of the fracture energy using three-point bend
tests: Part 2—Influence of bulk energy dissipation
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Available measures of the fracture energy Gp obtained with the procedure proposed by
RILEM TC-50 provide values that appear to change with sample size, calling into question
whether Gi can be considered as a material parameter. In a previous paper, possible sources
of energy dissipation from the testing equipment and lateral supports werve considered. In this
paper new possible sources of eneryy dissipation in the sample, apart fiom the fracture crack
itself, are considered. Such dissipation will take place inside the bulk of the most stressed
regions of the specimen and, if it is not taken inte account, higher values of Gy will be
recorded than that strictly due to surface fracture energy. When this contribution and the possible
energy dissipation analysed in previous work are considered, they are not enough to account
Jor the measured size effect. If Gy is to be considered a wmaterial parameter, the evaluation of
the vesults from the RILEM method should be analysed more carefully, In any case, the
dissipated energy reported here represents a non-negligible amount of Gz and should be taken

into account when performing measurements.

1. INTRODUCTION

Available measures of the fracture energy G, of cementi-
tious materials obtained with the work of fracture method
for notched beam tests [1] provide values depending on
the sample size; in general, these values increase with
sample size. A recent example was provided by a
round-robin test, After comparing the results of a
co-operative RILEM test — about 700 concrete beams of
different sizes from fourieen laboratories - it was
concluded that there was a size dependence of G, [2].
Such results cast some doubts on the relevance of Gg.

If Gg is o be considered a material property, it has to -

be size-independent. If G changes with specimen size,
most available models to predict concrete fracturc should
be revised. Research aimed at discovering some sources
of experimental errors that can explain the measured size
dependence of Gy was therefore undertaken by the
authors. In a previous paper [3] possible sources of
energy dissipation in the testing equipment and in the
rolling supports were analysed. Although some size-
dependent encrgy dissipation was found in both cases,
the measured values were not enough to account for the
total observed size dependence of Gg.

The purpose of this paper is to cxplore new possible
sources of energy dissipation in the sample, apart from
the fracture crack surface itsel. Such dissipation will take
place inside the bulk of the most stressed regions of the
specimen and, if not taken into account, higher values of
Gy will be recorded than that strictly due to surface
fracture energy. Moreover, if this extra dissipated energy
increases with specimen size — a plausible guess ~ it might
explain the observed size dependence of Gg.
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2. BULK ENERGY DISSIPATION

To have a feeling for the more stressed regions during
the beam test, a numerical computation based on the
cohesive crack model [4] was performed. The fracture
zone of the beam was modelled with a bilinear softening
function, as shown in Fig. 1, and the bulk was considered
linear elastic. The FEM computer code was ANSYS#,
Concrete properties were E =27 GPa, v =02, G, =
100 Nm™', f =314 MPa, o,=30MPa and critical
crack opening w, = 114.6 um,

From the set of all situations along the path leading
to the complete fallure of the specimen, two situations
were considered for special analysis. The first was that
corresponding to the peak load. The second was that
corresponding to an advanced state of crack growth,
where the small uncracked ligament indicates that high
compressive bending stresses might exist. Lines of
constant maximum principal stress are depicted in Fig.
2a for the peak load situation. Fig. 2b shows the map of
isolines for the minimum principal stress (maximum
compressions). Similar results for the small uncracked
ligament situation are shown in Fig 3a and b.

From these results it may be concluded that regions
damaged by compressive loads are very much localized
at the supports, and that the influence of a possibie zone
on the crack path damaged in compression prior to the
tensile fracture is negligible. Moreover, a detailed analysis
of the results shows that the high compressions are due
to the point-load, not to the bending stresses. Regions
that may be damaged due to tensile stresses have a kidney
shape and develop beside the crack path. Another
interesting result is that both regions - tensile and




306 Planas, Elices and Guinea

E = 27 GPa
v=0.2

o

DEFLECTION. u

GOHESIVE
ZONE /

{ 5
) | Ao
Fig. 2 Tsolines for (a) maximum principal tensile stress and (b) minimum principal stress (compression negative) at the peak
load situation (point A inn (c)).

compressive — are clearly localized and separate from one rolling lateral supports, where crushing and friction are
another. Consequently they may be uncoupled and  coupled. A straightforward procedure is to measure this
analysed separately, at least in a first approximation. energy by a properly designed test. This solution was

The theoretical analysis of energy dissipation around  adopted successfully for lateral supports and the results
supports is a very involved problem, particularly for  were given in a previous paper [3]. A similar procedure
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Fig. 3 Isolines for (a) maximum principal tensile stress and (b) minimum principal stress (compression negative), at advanced
crack growth represented by point B on the load-displacement curve (c) where the load has dropped to 10%, of the peak value.

is implemented here to measure the energy dissipation
at the central support,

The evaluation of the energy dissipated due to tensile
stresses in the bulk of the specimen — outside the crack
plane —cannot be performed experimentally because
there is no way to uncouple the energy dissipated in the
bulk from that dissipated in the crack surface itself,
mainly because both processes are intimately associated.
Henceforth, a theoretical estimate will be given, based
on an inelastic bulk model, together with simplified
methods of numerical analysis (perturbation method).
Finite sizes are analysed using standard FEM, and an
upper bound for infinite size is obtained using an
asymptotic analysis previously developed by the authors

£S5

3. ENERGY DISSIPATION BELOW THE
CENTRAL SUPPORT

As already menfioned, during the RILEM fest some
energy will be dissipated under the central support,
following the process of loading and unloading. A
numerical estimation of this energy is difficult because of
the high triaxiality and the lack of a sound mode} for

triaxial behaviour of concrete in compression. This is why
a direct experimental method was selected.

The experiment is based on the hypothesis that the
crushing zone below the support is essentially uncoupled
from the crack growth process, in such a way that the
process ‘felt’ by the crushing material is just 2 foad rise
followed by an unloading. We think then that the energy
dissipated in this zone may be obtained by making a test
where a single support is loaded up to the maximum
load found in the fracture test and then unicaded, and
where all other sources of energy dissipation (crack,
friction, etc.) are ruled out. For further improvement,
loading rates should be used similar to those found in
actual fracture tests.

A sketch of the experimental sct-up is shown in Fig,
4. Load was applied with the same device used for beam
tests. The displacement, u, associated with the applied
load was measured as sketched in Fig. 4. The sample
dimensions were chosen so that maximum fensile stresses
were always less than one-third of the concrete tensile
strength, thus avoiding energy dissipation due to tensile
damage.,

The test consisted of loading and unloading the
specimen and recording the load and its asso-
ciated displacement. Six measurements were done for
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Fig. 4 Sketch of the experimental device for the determination of the dissipation at the central support. Specimen thickness (00 mm.
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Fig. 5 Loading history for testing the central support. Each
peak corresponds to a beam size.

every maximum load. The area enclosed along one
cycle — virgin loading and unloading — gives the dissi-
pated energy during this process. The cycle was different
for cach specimen size, depending on the maximum load
reached during the RILEM test. The four cycles are
shown in Fig. 5. The virgin Joading curve was approxi-
mated by the envelope of the cyclic curve. The loading
velocity was different for each test, depending on the
maximum load, in order to reproduce the loading
conditions of actual tested beams. Each maximum load
is the average value of the peak load measured during
the RILEM test for each specimen size.

Fig. 6a shows the measured energy dissipated at the
central support as a function of the maximurm load during
the beam test. When this energy is divided by the broken
area of the tested. beam, to obtain a specific dissipated
energy, a marked size effect appears, although for the
largest size its contribution to Gy is less than 10%, as can
be seen in Fig. 6b. In Part 3 of this work [6], recorded
values of the size effect are about 50%,. Again, this source
of energy dissipation is not enough to account for the
known size effect in Gg.
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Fig. 6 Energy dissipated at the central support: (a) absolute
value, (b) refative contribution to the measured fracture
energy. Reference value, Gr =81 Nm~ M.

4, BULK ENERGY DISSIPATION AT REGIONS
OF HIGH TENSILE STRESSES

As shown in Figs 2 and 3, there are two regions attached
to the crack path that support high tensile stresses. It
might be expected that some energy would be dissipated
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Fig. 7 Material model in fension: (a) bulk behaviour,
(b) cohesive crack behaviour, {¢) composite behaviour.

in these regions as the crack propagales, To evaluate this
energy, an elasto-plastic numerical computation was
performed. An upper bound was also derived based on
an asymptotic analysis of a cohesive crack.

4.1 The model

The bulk behaviour of a dissipative concrete was
modelled according to the concepts reported by Hillerborg
[4]. A cohesive crack model displaying bulk dissipation
is formulated by retaining the hypotheses regarding
cohesive crack formation and evolution, and relaxing the
hypothesis of linear elastic behaviour of the bulk.

For a simple uniaxial tensile test, performed under
extension control, the stress-average strain sketched in
Fig. 7 is found. The mode} is completely defined by a
dissipative stress—strain relation in the loading branch
previous to the peak (Fig, 7a) and by a stress—crack
opening curve in the post-peak softening branch (Fig. 7b).
The area within the loop in Fig. 7a is the dissipated
energy per unit volume. In this model we consider a bulk
stress—strain behaviour without stiffness degradation, so
that the unloading proceeds along a straight line with
the same slope as at initial loading (Fig. 7c).

In general, during crack propagation in the beam test,
the bulk material close to the cohesive crack unloads —
following a ling parallel to the initial elastic branch,
according to the previous hypothesis - leaving an irre-
coverable strain, which in the uniaxial case is &, variable
with the previously reached level of stress o (as shown
in Fig. 7¢). The relationship between £ and ¢® obtained
from a uniaxial test will be the main input for this model,
which, in order to be used in a non-homogeneous case,
must be extended to triaxial situations. This extension

was worked in detail in [7] using an internal variable
formulation together with a thermodynamic approach,
which allows the model to be extended to situations
where stiffness degradation and irrecoverable strains are
considered. In its present simpler form, it happens to
coincide with an elasto-plastic model with a Rankine
toading function and an associated flow rule.
The governing equations for this model may be written
as
de = Cdo + B de? (1)

&’ = f(a®) and ¥ = Sup(o,) 2)

Equation [ is the well-known split of the incremental
strain into elastic and irrecoverable parts, Cis the elastic
compliance fourth-order tensor and A defines the
direction of plastic flow and is the projector tensor on
the subspace associated with o, the maximum principal
stress. £7 is the (uniaxial) equivalent plastic strain. The
two Equations 2 are the hardening law and the integrated
form of the Rankine load function a; < ¢®. The hardening
law is the only material function of the model. It is the
relationship between the equivalent plastic strain and the
instantaneous yield limit and is obtained from a uniaxial
tensile stress—strain curve in the pre-peak branch, as
sketched in Fig. 7. Finally, the supreme functional of the
maximum principal stress is defined as

Sup(ay) == Sup[a,(1), ] = max{o(x}; [0, 1]} (3)

From Equations | and 2 one arrives at an equation
relating the incremental strain tensor to the history of
principal stresses:

de = Cde + B f'[Sup(o;)] d[Sup(e,)] (4

where f'(x) indicates the first derivative of the function

J(x) with respect to its argument.

An interesting feature of this model is that the energy
dissipated per unit volume w®, along any loading path,
may be written in closed form as

Sup(ay) Suplar)

o = J aP (eP == f o a*)yda®  (5)
0 0

The selected hardening law was

&P = f(oP) = 0 for
e = f(0") = £,(20%/f, — 1)*  for

a®/f, < 0.5 (6a)
a®/f > 0.5 (6b)

where f, is the tensile strength and &, is the inelastic
strain at the peak load, as shown in Fig, 7¢. The softening
function was taken to be the bilinear function previously
used and sketched in Fig. 1.

4.2 Evaluation of the dissipated energy

The analysis of the development of a cohesive crack inside
an elasto-plastic body is a complex task requiring
powerful special-purpose numerical codes. However, it is
possible to reveal the dominant effects by means of a
first-order perturbation analysis set up by considering a
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uniparametric family of elasto-plastic bodies where
inelastic strain can be decreased uniformly to zero by
writing the hardening function f(a®) as f(a®) = A/ *(e"),
which, according to Equation 4 leads to the incremental
constitutive equation

de = Cdo + AR f*[Sup(e)] d[Sup(e)]  (7)

Obviously, when 2 — 0, the constitutive equation tends
to the elastic form, so that at any loading step one can
write the solution for the stress distribution as

Sup(oy) = Sup(ga} + O(2) (8)

where O(1) and O(4) are, respectively, a tensor-valued
function and a scalar-valued function vanishing for
) — 0, and 6, and oy, are the bulk-elastic solutions for
the stress tensor and the maximum principal stress, The
dissipation density may then be written, according to
Equation 5

o =04+ O{4) and

Sup{aa)
@” = J a"f'(c®) da® + AG(A) 9
g

The first-order approach for the dissipated energy is
obtained by taking only the first term in Equation 9.
Notice that for computing this value, one only needs the
maximum stresses computed with the hypothesis of bulk
linear elastic behaviour.

The dissipated energy was cvaluated solving first the
beam problem, as was done previously on other grounds,
i.c. using finite elements with a cohesive crack embedded
in a linear elastic medium, as sketched in Fig. !. Then,
the supreme of the major principal stress at each Gauss
point was recorded along the process, and after complete
fracture, the energy dissipated per unit volume was found
using Equation 9. Volume integration (sum over ele-
ments) gave the total energy dissipation in the bulk. This
result is depicted in Fig. 8a for the four sizes considered,
as a function of the specimen size. The relative
contribution of the bulk dissipation to the measured
fracture energy is plotted in Fig, 8b.

4.3 An upper bound for the dissipated energy

Numerical results show two symmetrical regions, with
respect to the crack plane, where energy can be dissipated
as the crack propagates, An upper bound for this
dissipation can be evaluated by considering an extreme
situation: a very large spedimen where the cohesive zone
is fully developed and propagates in a self-similar way.

Moreover, when a first-order perturbation analysis is
applicable, knowledge of the elastic solution suffices, as
described in the previous paragraph. Fortunately, such
a solution is known from work already done by the
authors when analysing the asymptotic behaviour of
cohesive cracks [5].

For very large specimens, and under stcady-state
propagation, the situation can be sketched as shown in
Fig. 9, where this pattern moves self-similarly as the crack
advances. Consequently, after a crack advancement of a,
the dissipated energy per unit volume, @°(x,, x,), will
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Fig. 8 Energy dissipated in the bulk tension zoues: (a)
absolute value, (b) relative contribution to the measured
fracture energy, including the asymptotic value for infinite size,
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Fig. 9 Lines of equal maximum principal stress in
steady-state growth of a cohesive crack in an infinite medium.

fulfif the conditions

wP{x,, X,) = 0P(x; — a, x;) (10a)
ID a D

fo” _ oo (10b)
da 0x,
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Fig. 10 (a) Grid used in the evaluation of the bulk dissipation for steady cohesive crack growth in an infinite medium.
(b} Maximum principal stress distribution around the cohesive zone.

and the contribution of the bulk dissipation to the specific
energy dissipation during crack growth is given by [7, 8]

+ @ +r1_;j o + a0
AGF = j j o d-‘fl d,\'g - j thl)mx('\‘z) de

—w a

= — o

(11)

where the second expression is obtained using Equation
10b, integraling with respect to x,, and setting

o™(0,x;) =0 and oP(—w, x,) = 0, (x,).

These last equalities are easily found by taking into
account that o® cannot decrease for a given material
point, and that a point describes, with respect to the crack
tip, a line x, = constant coming from x, = o where the
dissipated encrgy must be zero, and going to x; = — 0,
where the dissipated energy must be maximum. Of course,
the maximum is attained much before reaching the minus
infinite end of the line, exactly at the point where
unioading starts, because in our model no encrgy
dissipation takes place during unloading.

The maximum energy dissipation for a given ordinate,
Whae(x5), when the perturbation approximation is used,
is obtained from the clastic field of principal stresses, ¢,
using Equation 9 with the only modification that Sup(o,,)
must be computed now as a spatial supreme rather than
a temporal one:

Sup(ag) = max{og(xy, x,); ¥y €(—o0, +0)} (12)

When the hardening law shown in Equations 6a and 6b
is used, o?__ becomes

g
mE. = / o
6

max
where § = Sup(aoy)/ £
To evaluate the dissipated energy, it suffices to know

(164> — 1282 + 1) (13)

the values of Sup(oy) along x,. These values can be
extracted from the knowledge of the elastic solution. As
already mentioned, this problem was sclved by the
authors for a general softening function [5]. Here, the
maximum principal stresses were computed on a dense
two-dimensional grid around the cohesive zone [7]. Fig.
[0a shows the hall grid (30 x 40 nodes) with d = R/10
(where R is the length of the steady cohesive zone), and
Fig. 10b shows the distribution of the maximum principal
stresses. By selecting the maximum stress along each line
parallel to the crack line (v, constant), Sup(s,) was
obtained and hence f. The dissipated energy was finally
computed as

Go= ) *”?(1633—12ﬁ2+1)d:3-61m"2 (14)

nodes

This result is less than 5% of the specific fracture energy
Gy, and does not account for the measured increase of
Gy, with specimen size, about 50% of Gg [6]. Other
estimates of Gp, based on different realistic hardening
functions, also give values much below 0.5G: [7, 8. The
asymptotic result is drawn in Fig. 8b and shows that
usual specimen sizes (up to 30 cm depth) are very far
from the asymptotic limit.

5. CONCLUSIONS

The objective of this paper was to evaluate the encrgy
dissipated inside the bulk of the most stressed regions of
the notched beam, to ascertain whether this dissipated
energy was size-dependent, and to check whether the
computed values may account for the observed size effect.

1. Elastic analyses show that regions under high
compressive stresses are localized at the supports. Results
for lateral supports were alrcady reported [3] and only
the central support is considered here, Regions under
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high tensile stresses develop along the crack path close
to the tip and are also considered here. Highly
compressed regions and highly tensioned omnes arc
essentially uncoupled.

2. The specified dissipated energy at the central
support is shown in Fig. 6b. It clearly exhibits a size
cffect, amounting to 10% of G for the largest size, but
not enough to account for the measured values of size
effect.

3. The specific dissipated energy inside the high tensile
stress regions is shown in Fig. 8b. Again, a size effect
appears, amounting to 2% of Gy for the largest size, not
gnough to explain the experimentally observed size effect.
An asymptotic analysis was performed to obtain an upper
bound, and values about 3% of G were found.

4. When all these contributions to energy dissipalion
are added together, including those reported earlier [3],
they are not enough to account for the measurcd size
effect —up to a 50% increase in G, for a three-fold
increase in size. If Gy is to be considered a material
parameter, the evaluation of the results from the RILEM
method should be analysed more carefully, as suggested
in a subsequent paper [6].

In any case, the dissipated energy reporled here
represents a non-negligible amount of G, and should be
taken into account when performing neasurcments.
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RESUME

Mesure de Pénergie de rupture par les essais de flexion
trois points: 2 — Influence de la dissipation de Pénergie dans
la masse

Les mesures de P'énergie de rupture Gy obtenues selon la
méthode préconisée par la Commission Teclnigue 50 de la
RILEM, dont on dispose, changemt avee la taille de
Iéprouvette, ce qui met en question la possibilité de
considérer Gp comme un paramétre du matérviau. On a
considéré, dans un article précédent, les sources possibles
de dissipation de éneryie due a Péquipement d’essai et
(X sUpports latéraux,

On examine dans cet article-ci de nouvelles sources
éventuelles de dissipation de Pénergie dans Péprovvette,

excepré celle de rupture proprement dite. Cette dissipation
se produira dans la masse, dans les régions les plus
contraintes de ['éprouvette et, si on sen tient pas
compie, on enmvegistrerd des valewrs de Gp plus élevées que
celles strictement inhérentes & [Dénergie de rupture
superficielle. Si on considére cet apport et la dissipation
d*énergie éventuelle analysée dans le travail précédent, ils
ne suffisent pas a expliguer Ueffet d’échelle mesuré. Si on
doit cousidérer Gg conune un paraméire du matérian, il
conviendrait d’analyser avee plus de soin évaluation des
résultats obtenus uvec la méthode RILEM. De toute fagon,
I'énergie dissipée, dont on fait mention ici, représente une
part non négligeable de Gy et devrait étre prise en compte
dans les mesures.




