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Optimal reinsurance

Maria de Lourdes Centeno and Onofre Sim 0es

Abstract.  In this article we present a few of the results obtained olnggitreinsurance, since the
pioneer work by Bruno de Finetti in 1940. As literature on siidject increased substantially in the last
decade, a particular attention was given to these more treesuits.

Reaseguro 6ptimo

Resumen. Este articulo presenta algunos resultados importanesadeguro 6ptimo, desde el trabajo
pionero de Bruno de Finetti en 1940. Ya que la literaturaesebte tema ha aumentado de forma sustancial
en la (ltima década, le damos una atencion particulas eeleultados mas recientes.

1 Basics of Reinsurance

1.1 Insurance and Reinsurance

Under an insurance contract, the insurer accepts to payotieyipolder’s loss, (or part of it), on the occur-
rence of an uncertain specified event, and the policyholctss to pay the premium. This also happens
in reinsurance contracts.

Reinsurance is a form of insurance, with some differencasrésult from the fact that it is insurance
for insurers. Reinsurance contracts are celebrated betavdizect insurer and a reinsurer, with the purpose
of transferring part of the risks assumed by the insurersitbitsiness. In this way, improved conditions
for a better risk management are created. Note that reirsshexe contractual obligations only to direct
insurers, not to policyholders.

The problematic risks are those carrying either the passibturrence of very large individual losses
or the possible accumulation of losses from one single evenst of the times because individual risks are
not independent. Reinsurance helps insurers to fulfil s@irency requirements and to provide them with
additional underwriting capacity to accept individuakssand types of business otherwise unbearable.

As in any other insurance contract, the reinsurer chargesraipm to the cedent (the insurer), which
is greater than the expected value of the ceded risk. Théheisa trade-off between the part of the risk
retained by the direct insurer and the premium paid to thesteer. Determining the better retention is
therefore a very important issue.
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1.2 Reinsurance Forms

Reinsurance arrangements are usually divided into tweetasproportional reinsurance and non-propor-
tional reinsurance. In proportional reinsurance the dinesurer and the reinsurer share premiums and
losses at a contractually defined ratio: the reinsurer ds@fixed share of the liabilities assumed under
the original contract, and receives the same proportioh@friginal premium, minus a commission. In
non-proportional reinsurance cessions are no longerdinéehe sums insured, but to losses, and there is
not a pre-determined ratio to divide premiums and lossegd®t insurer and reinsurer. There is an amount
of losses up to which the direct insurer pays —the deductibleet retention— and the reinsurer pays the
losses above it. Quota Share and Surplus are proportidnalirance settlements and Excess of Loss and
Stop Loss are non-proportional forms.

Under a Quota Share, a fixed proportion of every risk accepyetie insurer is ceded to the reinsurer.
This proportion settles the division rule of premiums angk&s between cedent and reinsurer. That is to
say: when the insurer takes a ri&k for a premiumr (X;), it will retain a proportiornr, 0 < r < 1, of both
the claimsX; and the premiumr(X;) and the reinsurer takes a proportibr- r also of X; and7(X;).
Quota share is a simple form of reinsurance with low adnmaiistn costs, but does not help to balance the
portfolio and provides no good protection against pealsrikthe accumulation of losses.

Under Surplus reinsurance, the direct insurer retainsyavsk up to a certain amount, the retention,
and the reinsurer is obliged to accept only the amounts éeddyy the insurer above that retention. When
the sum insured is below the retention, the insurer retdiasentire risk. For each reinsured risk, the
ratio between the retained and the ceded amounts deterhomethe premiums and losses are distributed
between them. That is, when the insurer takes aXiskor a premiumr(X;) and the capital insured and
the retention are, respectively); and M, it will retain a proportion)/Q; of both the riskX; and the
premiums(X;) and the reinsurer will take a proportian- M/Q; also of X; andx(X;). Though surplus
reinsurance still does not provide an effective protectigainst the accumulation of losses, it reduces the
range of possible retained losses and the relative vaitiabilcosts, limiting the highest retained exposures
and allowing to adjust the risk.

Excess of Loss (XL) can be contracted under a risk basis oeruaa occurrence basis. Per risk XL
protects against possible large losses produced by ongypaiid the reinsurer pays any loss in excess of
the deductible. Per event XL protects against an accurounlati individual losses due to a single event
and the reinsurer pays when the deductible is exceeded bggtegate loss from any one occurrence.
When the insurer takes a risk; and the retention id/, it will retain min{X;, M} = X; A M and cedes
max{0, X;— M} = (X, — M), to the reinsurer. Excess of loss is very efficient to stabilie results of the
insurer, since it reduces the exposure on individual ritlsrovides also protection against accumulations
and catastrophe risks. Because some reinsurers do nott acegpacts with low retentions, which may
produce numerous claims, the excess of loss cover has oftendrganized in layers, increasing the costs.

In Stop Loss covers the reinsurer pays if the aggregateddsse year in a certain class of business
(or the whole business), net of other reinsurance covergeskthe agreed deductible. It is not relevant
whether it is exceeded by one single large loss or an acctioiaf small and medium-sized losses. The
deductible, now expressed as a function of the aggregatesssts, is settled either as a monetary limit
(stop loss) or in terms of a proportion of premium income ésscof loss ratio). When the aggregate losses
isY and the retention i3/, the insurer retain¥” A M and cedegY — M ). Only stop loss reinsurance
can offer protection against both increases in the sevanitithe frequency of losses. Administration costs
are lower, but premium rating may not be an easy task.

Lately, ‘ART - Alternative Risk Transfer’ techniques haygpeared, as is the case of life and no life finite
risk reinsurance, property/casualty multi-year reinsaea and multi-risk reinsurance, which are extensions
of the conventional types. Another recent proposal is thapaative Pivot Smoothing (APS) Reinsurance,
designed to reduce the variance of the retained risk withffetting the mean, taking thus account of
modern portfolio theory. The proponents of APS, Koller arettivyller, declare that traditional forms of
reinsurance —proportional and non-proportional— incegta® mean burden on the cedent. Considering
a risk X; and a payment functioh(X;), that specifies how much the reinsurer is required to pay @f th
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claim X, the authors state that an insurer company would be bestextlto take out a reinsurance policy
with meanE(h(X;)) = 0 and standard deviatidd(h(X;)) = dD(X;),0 < d < 1, and suggest(X;)) =
a(X; — E(X;)),0 < a < 1. They also recommend that the premium, “much lower than teejum for
traditional reinsurance products” (p. 332) should be dated by the principle of zero utility.
A more exhaustive synthesis about reinsurance forms iepted in [L9].

1.3 Premium Principles

Like any other insurance contract, reinsurance has a @ipeemium that the cedent of the risk has to pay
to the reinsurer. The premium can be more or less expensierding to the agreed cover, and some times
it is not easily computed. Let, in a general way, represenptrt of the claims amount paid by the reinsurer
by Z, Z obviously a random variable (r.v.). Then the reinsuraneenium must be some functional of the
distribution function ofZ, say,n(Z). The reinsurance premium is of great significance in thesteance
market. There are multiple references containing an ogenaf the premium calculation principles, but
we will list only those that are more frequently used in thedietical papers dealing with the problem of
optimal reinsurance contracts (sé€]):

Expected value principle  7(Z) = (14 p)E(Z2)

Exponential principle m(Z) = %1 E (exp(82))

Variance principle m(Z)=E(Z)+ ﬁVar( )

Mean value principle m(Z) = \/E(Z?) = \/(E(Z))? + Var(Z)
Standard deviation principle 7(Z) = E(Z) + ﬁD( )

Mixed principle m(Z) =E(Z)+ 51D(Z) + 2 Var(Z)

Modified variance principle «(Z) =E(Z) + 5:D(Z ) + B2 VaE(Z))
Quadratic utility principle  7(Z) =E(Z) 4+ e+ — Var(Z)

Zero utility principle 7(Z) such that/ (wy) = E U(wo+7(Z) - 2)],

wherep, 3, f1, B2, e > 0, U(w) is an utility function of the reinsurer wealth such tHat(w) > 0,
U”(w) < 0, andwy is the reinsurer’s initial wealth.

2 Optimal Reinsurance

2.1 Classical results

When designing a reinsurance programme for a risk, thene é&tampt to decide optimally on the type of
reinsurance and on how much to reinsure. In other wordsyalegeestions arise and many factors must
be considered: the current and future business models antianet loss exposures, the financial strength
and risk aversion, the market conditions and opportuniti&khough the insurer and the reinsurer are
both involved, most of the theoretical works on the topic degoted to the search for the optimal form
of reinsurance from the cedent’s perspective and concludaviour of a particular type of reinsurance,
depending on the chosen optimality criteria and the prengtinciple.

One of the first results to achieve general acknowledgmesiblvtained by Borch in 1963], proving
that stop loss is the optimal form of reinsurance —in the sehat, for a fixed net reinsurance premium,
it gives the smallest variance of the net retention. But d@h$ained assuming that the loading coefficient
on the net premium is not different from that in a conventlaneta treaty, which makes Borch to say:
“l do not consider this a particularly interesting resulDo we really expect a reinsurer to offer a stop
loss contract and a conventional quota treaty with the saaging on the net premium? If the reinsurer
is worried about the variance in the portfolio he acceptswhieprefer to sell the quota contract, and we
should expect him to demand a higher compensation for tipel@$s contract.”
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This work was followed by several others with distinct apgaroes, but the results obtained were still
in favour of the stop loss contract. Later on, different citmitions appeared in favour of other kinds of
reinsurance. In 1977, Beard et &] proved that the quota share arrangement is optimal in theesthat it
is the cheapest way to limit the variance of the retained rigke reinsurance premium loading increases
with the variance of the ceded part. In 1979, assuming theated value principle ant that the loading
coefficient is independent of the reinsurance form, Gerbérghowed that the excess of loss is optimal
when the ceded risk is a function of the individual claimstlia sense that it maximizes the adjustment
coefficientkR. Remark that to maximiz& is to tighten the upper bound for the probability of rdifw),
since it is possible to prove thatwy) < e~ 0. In 1987, Bowers et al4] came to the same conclusion,
considering reinsurance based on the individual claimes ptiemium computed with the expected value
principle and the objective of maximizing the expectedtytil

Meanwhile, other significant solutions were found, follagian approach to the problem that is also
very common: to consider that the insurance form is knowncamapute then the retention level.

In 1940, de Finetti 1] considered a quota share reinsurance: eéhdependent risks and solved the
problem of the retentions;, 0 < r;, < 1,7 = 1, 2, ..., n, that would minimize the retained variance,
under the constraint that the expected profit of the cedentdvoe equal to a constait. B should be
settled in order to keep the ruin probability of the cedenaimadequate level. He derived the solution
r; = min{p[(1 — ¢;)P; — E[S;]]/Var(S;), 1}, wherec; is the commission rate; is the gross premium
(before expenses and reinsurance) for iskand . depends orB. We can see that if a risk is actually
reinsured, the retention is directly proportional to thedimg and inversely proportional to the variance of
the risk.

In 1979, Buhlmannj] solved the same problem when reinsurance is an excess ©f Jpdeing
compound-distributed with claim numbelks and individual claims distributio;. The solution isM; =
pBi — (Var[N;] — E[N;])/E[N;] [, (1 — Gi(z)) dz, where the loading; is a proportion of the expected
ceded risk.

Waters [L9] studied the behaviour of the adjustment coefficient as atfon of the retention for quota
share {) and for excess of losd\({), in 1983. Under the usual assumptions, he provedithat1l when
the premium is calculated with the variance principle, @ ¢ixponential principle. He further proved that,
if the aggregate claims are compound Poisson and the raimseipremium is calculated according to the
expected value principle (with loading coefficie#)t, the optimal retention is attained at the unique point
M satisfyingM = R~'1n(1 + ), R the adjustment coefficient.

In 1991, Centeno e Simdes(] dealt with the problem of determining the retention linfits mixtures
of quota share and excess of loss reinsurance in such a wayraimize the adjustment coefficient. They
proved that the adjustment coefficient is unimodal with ttemtions and that the optimal excess of loss
reinsurance limits are still of the ford/; = R=*In(1 + 3;),7 = 1,2, ..., n, i.e., again the excess of loss
retentions are increasing with the loading coefficights

Further details on classical results can be seefiin [

2.2 Recent results

The literature on optimal reinsurance increased subsiniin the last decade. In this paper we present a
non-exhaustive selection of these results. For the sakeeakders, we tried to keep a consistent notation
throughout the paper, and apologize to the authors for amysethat might have been created during the
process.

LetY be anon-negativer.v. defined on a probability sq&teF, Pr) representing the aggregate claims
amount of an insurer in a given period of time. L&tY"): [0,+00) — R be a measurable function ®f,
such that < Z(Y) < Y with probability 1 and representing the part of the aggregate claims amouht pai
by the reinsurer. In the results that follow the authors arerested in determining the functiéhin a given
space that minimizes a given risk function, possibly undene constraints. The risk function varies from
paper to paper as we will see.

We denote byr(Z) the premium for the reinsurance arrangeniént
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2.2.1 Insurer’s optimal reinsurance strategies (Leslaw Ga  jek, Dariusz Zagrodny, 2000 [ 12])

In this work the authors solve the problem:
Minimizezcz Var (Y — Z(Y))

s.to: n(Z)=EZ(Y)+p8DZ(Y)<P,

where
Z={Z:[0,+00[ — R | Zis measurable anti< Z(y) <y, Yy > 0}. (1)

The premiumr(Z) is calculated by the standard deviation principle with selfeading paramete?, 5 > 0.
P > (s the amount of money that the insurer is ready to spend osugance.

In words: Considering the set of all plausible reinsuramcarmementsZ(Y'), with reinsurance pre-
mium (calculated by the standard deviation principle) teas or equal td”, the authors’ purpose is to find
out the arrangemett* (V') that minimizes the variance of the retained ri8ky (Y — Z(Y)). The standard
deviation principle is selected for it takes into accoumetvariability of the reinsurer’s share of the risk.

Assuming thafEY? < oo (i.e. they work on aL? space) andlY + DY > P, and making use of
Gateaux differentiability and Karush-Kuhn-Tucker theror, Gajek and Zagrodny prove their main result.

Theorem 1 Under the given constraint,

Z°(Y) =

0 ifO<Y <M
(1—-r)(Y — M) otherwise,

is the optimal reinsurance arrangement, whatfe> 0 andr € [0, 1) are numbers such that

2
EY — M — (y — M)dF + = / (y — M)2dF — / (y — M)dF| =0
[M,00) [M,00) [M,00)

(1—r) /[Moo)(y—M)dF—i-ﬁ /[MOO)(y—JVf) dF—(/{MOO)(y—]V[)dF> =P

and I is the distribution function of the total claims.

Remark 1 The authors call this rulehange loss reinsurand®ecause it is similar to stop loss reinsurance.
It is easy to see that whet — 0, M is bounded and — 0, which implies thatZ* tends to a stop loss
contract. Additionally, the cas@ = 0 corresponds to the pure risk premium and a classical resittes
that stop loss is an optimal reinsurance arrangement underpure risk premium calculation. Therefore,
if 3 is allowed to be equal t6, the solution obtained in the paper includes this result asdicular case.

Remark 2 For a giveng > 0, Z* can be seen as a combination of the quota share and stop lwss re
surance strategy: i < M, the insurer pays the total claim amourit;, whenY > M, it retains
Y-(1-nr)(Y —-M)=M+r(Y —M). Thatis to say, it paymin{Y, M + (Y — M)}.

2.2.2 Optimal reinsurance under general risk measures (Les  law Gajek, Dariusz Zagrodny,
2004 [13])

Consider an insurer interested in purchasing as much riglegtion as possible, at a price not exceeding a
given limit P. The set of admissible reinsurance arrangements is the clas

~

Z(Zy,7Z5) =4{Z : 0,400 — R | Z is measurable and; (y) < Z(y) < Z2(y), y > 0},
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where the boundary functiod andZ,: [0, 00) — [—o0, 00) are also measurable functions. Itis assumed
that the insurer’s risk is caused by positive fluctuationthefretained share of the total clairelatively
to its expectation.

In order to find an optimal contract, a measurable harm fongti: R — R is introduced, which
measures the insurer’s loss. The objective is to minimieeettpected harm, represented/§y? ), the risk
measure.

In a more formal way, the authors want to find out the reinstearrangemer*(Y") that is solution
to the following problem:

Minimize,_z , - nZ)=Ee (Y -Z(Y)-E(Y —Z(Y)))
{ s.to: 7(Z)=EZ(Y)+pDZ(Y)<P.

Itis assumed that:
(A) EY < o0,
(B) EZ}(Y) < cc andEZ2(Y) < oc;
(C) Ep(Y —Z(Y)—E(Y = Z(Y))) < 0, Z € Z(Z1, Zs).

Moreover, for any functionp satisfying (A)—(C) and a give* € zZ (Z1, Z5), they define a function

supporting; at Z*, as an integrable functiost (-) satisfying
/[Om] oy = 2(y) ~ BV = 2())) = p(y — Z2"(y) = B(Y = 2*(V))) | dF(y)

> [ sw]- 2w - 20+ BEW) - 22 (0)] dF)
[0,00]

whereF is the distribution function of the total claiixi.

Considering the Lagrangian function and using the Cauatiys@rtz inequality, they derive a general
sufficient condition for a given contract to be optimal witlthe classZ (71, Z5).

Theorem 2 Assume thaP’, 3 > 0, P < EY + DY andDY > 0. Lets* be a function supporting at
zZ* € Z(Z1,Zs), suchthaDZ*(Y) > 0. If s*, A > 0and Z*: [0,00) — (—o0, 00) are such that

(i) foreveryy > 0 suchthatZ*(y) = Z1(y),

A—s"(y) + Es*(y) — A8 ggg% + /\ﬁDZZZ((y;) >0;
(i) for everyy > 0 such thatZ*(y) = Za(y) and Z (y) < Z(y),

A—s"(y) + Es*(y) — A8 ggg% + /\ﬁDZZQ*((y;) >0;
(iii) for everyy > 0 suchthatZ,(y) < Z*(y) < Za(y),

A= (y) +Es"(y) = A8 ggg% + AﬁDg*(f;) > 0;

(iv) n(Z*) < Pand\(n(Z*) — P) = 0;

thenZ* minimizes;(Z) within the classZ (Z, Z,), under the constraint(Z) < P.
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Gajek and Zagrodny derive explicit forms for the optimal waot under different insurer’s risk mea-

sures. The set of admissible reinsurance arrangementsithealassZ = Z (0,Y).

Theorem 3 Assume thaP, 8 > 0, P < EY + DY andDY > 0. Then there are constanfd and L
suchtha) < M < L < oo and

0, fory < M
Z*(y)=qy—M, forM<y<L
L—M, fory>1L

is optimal within the clas€ under the risk measureg (Z) = E|Y — Z(Y)—E(Y — Z(Y))| andn; (Z) =
E(YY - Z(Y)—E(Y — Z(Y)))*. The constants are defined by the following equations:

/ (M—y)dF(y)=/ (y— L)dF(y)
[0,M]

(L,00)

and

P=EY - M+ ﬁ\/(EY — M)2P(Y < M)+ (L —EY)?P(Y > L) + / (Y —EY)2dF(y).
(M,L]

Theorem 4 Assume thaP, § > 0, DY > 0 and P < EY + gDY. Then there are constanfd andr
such thatM > 0 andr € (0, 1) and the change loss contract

7 (y) = 0, fory <M
Y=Y = my— M), fory>M

is optimal within the classZ under the truncated variance (or semi variance) risk measyr(Z) =
E[(Y — Z(Y) — E(Y — Z(Y)))*"]?. The constants are solutions of the following equations:

2
P=t=n| [ w-wmares BJ [, =anzaro) - < J oy o= dF<y>>

and

/ (M —y)dF(y) —/ (Q(r, M) —y)dF(y)
[O,]\I] [O,Q(T,]W)]

2
= B\IAMW)(y_M)QdF(y)_ (/(Mm)(y—M)dF(y)> ,

Q(r,M) = /[O.M} ydF(y) + / ((ry+ (1 —r)M) dF(y).

(M,0)

Note thaty; (Z), n (Z) andny (Z) correspond te; (t) = [t], ] (t) = max(0, t) andp] (1) = (t7)2,
respectively.

2.2.3 Mean-variance Optimal Reinsurance Contracts (Marek  Kaluszka, 2004 [ 16])

The aim of the author is to derive optimal reinsurance rutesiged the cedent trades off between reducing

both the variance of the retained risks and the expectea wliis gains.
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Considering a reinsurance treaty arranged on a claim byndigisis with a common compensation
functionZ, the problem is

N
Minimize Var (Z[Xi - Z(Xy)]

i

N
1=

=1 N
s.to: D (Z Z(Xi)) <g (P,EZZ(Xi)>

=1 =1

N
B> X - Z(Xz-)]) = mEN

0<Z(X)<X,

whereX, Xo, ... is the sequence of claims occurring in a time interval, whichassumed to be indepen-
dentrandom variables and identically distributed withVar X; < oo; Z(X;) is the part of claimX; thatis
carried by the reinsurer, to be determinBc(;Zf.V:1 Z(X,)) is the standard deviation 8 , Z(X;) and it
is assumed that the reinsurer’s premium, Bay, is defined by (Pr., EYY | Z(X:))=D(XN, Z(X))),
g(z,y) a function on{ (z,y) | * > y, y > 0}, increasing inz for eachy (a class which includes many
usual principle?\;m is a fixed parameter such s< m < EX; in order that the problem has nontrivial
solutionsD(Y",0, X;) < g(P,E SV, X;), P > 0the amount of money which the cedent wants to spend
on reinsurance.

Using the Cauchy-Schwartz inequality, the following tresarwas proved, after some calculations:

Theorem 5 If (EX —m)? [EN (‘]g‘}r())‘; + VarN} < ¢*(P,EN(EX — m)), there exists a redl such that

0 <b < supX = sup{b; Pr{X — b} > 0} and

1 ¢*(P,(EX —m)EN) — (EX —m)*VarN | (EX —m)? @)
S ENVar(X — b), TEX b2
. L EX —m
Then a solution of the problem is given BY(X) = ——— (X — b) ;.
E(X —b)+

Remark 3 When(EX — m)? [EN (\]’;;;))2 + VarN} = ¢*(P,EN(EX — m)), the quota share coverage
Z*(X) = (1 — §%)X is a solution of the problem, sinée= 0 is a solution of(2). Moreover, if there is a
strictly positive solutio* of the equationifE X —m = E(X —s), s > 0, such thaVar(X —b*) . EN +
(EX — m)?VarN < ¢%(P,(EX — m)EN), then the excess of loss contrag€t(X) = (X — b*), is a

solution of the problem.

Using similar arguments, Kaluszka presents another résudt larger class of admissible reinsurance
arrangements, assuming tilatt EZ < EX instead o) < Z(X) < X with probability1l. The problem is
now

N
Minimize Var» [X; — Z(X;)]
i=1

N N
s.to: D <Z Z(XU) <y <P,EZZ(Xi)>
B(X —2)—m -
0<Z(X)<X

Theorem 6 Suppose thag?(P, (EX — m)EN) > (EX — m)*VarN. Then the solution to the problem
is given by
Z*(z) = a(x — EX) + EX —m,
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wherea = min (1, \/92(P,(EX—mg]%]\\Zr—(g?)X—mPvarN)'

Remark 4 If m = EX, then the ruleZ** is the APS reinsurance arrangement proposed by Koller and
Dettuyler[17].

A third result is derived, under the title “Trade-off betwegain and security of cedent”, where the
author assumes that the cedent is interested in the mirtionizaf a function which depends not only on
the variance of his payment but also on his expected gainpidigdem is

Minimize h (EXN:[XZ- - Z(Xi)],Vaer:[Xi - Z(Xi)]>

i=1 i=1

N N
s. to: D< Z(X;) —Q<P7EZZ(X1')>

h(z,y) strictly increasing iny for eachz, taking real values. Arguments similar to those used to g@rov
Theorenb allow to prove a third theorem, where the auxiliary function

o(t,b) = h (EN(EX — t), EN[Var(X — b); — 2E(b — X)4]

N \/ g*(P,tEN) — *VarN
EN

D(X — b)+] EN+ [EX —t]*VarN) ,

b,t > 0 appears.

Theorem 7 Assume there exist realsand b such that:0 < b < supX; ¢(a,b) = min{p((¢,0); 0 <
t <E(X —b)4};anda?|[ Var(X — b)4 /(E(X —b)1)?|EN + a? Var N = g?(P,aEN). Then

a

2(X) = ey

X —b)y
is a solution of the problem.

2.2.4 Optimal reinsurance policy: The adjustment coefficie nt and the expected utility cri-
teria (Manuel Guerra, Maria de Lourdes Centeno, 2008 [ 15])

This paper is concerned with the optimal form of reinsurafnoe the ceding company point of view,
when the cedent seeks to maximize the adjustment coefficfehe retained risk. The problem is solved
by exploring the relationship between maximizing the amjesnt coefficient and maximizing the expected
utility of wealth for the exponential utility function.

Under the assumption that the reinsurance premium primoigd is a convex functional and that some
other quite general conditions are fulfilled, the authoastdty proving existence and uniqueness of the
solutions and provide a necessary optimal condition. Thesdts are used to find the optimal reinsurance
policy when the reinsurance premium calculation principlhe expected value principle or the reinsurance
loading is an increasing function of the variance.

Y, is a non-negative r.v. representing the aggregate claims given period of time. Aggregate claims
over consecutive periods are assumed to be i.i.d..

The set of all possible reinsurance policie€islefined by ).

For each period of time, the premium charged for a reins@aonticy is computed by a real functional
m: Z — [0, 4+00], which is assumed to be convex, non-negative, continuonmeam-square sense and such
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thatw(0) = 0. The insurer gross premium per unit of timecjswith ¢ > E[Y], andL is the profit, per
unit of time, after acquiring a reinsurance poligyY), i.e.

Ly =c—n(Z)— (Y - Z(Y)). 3)

It is assumed that” is a continuous random variable with density functjgrithat &/ [YQ] < 400 and
thatPr {L, < 0} > 0 holds for everyZ € Z.
Considering the ma@': R x Z +— [0, +00], defined by

—+oo
G(R,Z) = / e f2Wf(y)dy, RER, ZeZ,
0

the adjustment coefficient of the retained risk for a paléicteinsurance policy/ € Z, which is denoted
Rz is defined as the strictly positive value Bfwhich solves the equation

G(R,Z) =1, 4)
for that particularZ, when such a root exists. The m&p— R is a well defined functional in the set
Zt ={Z € Z: (4) admits a positive solution

Denoting byu, v > 0, the initial reserve and if a reinsurance poli€ye Z is in force year after year,
then the probability of ultimate ruin is

Yz (u) = Pr {u—i— > Lz, (w) < 0,for somen = 1,2, }
k=1

and it is well known that the probability of ruin satisfies thendberg inequality:
Yz(u) < exp(—uRyz).
The main problem that the authors solve is:

Problem 1 Find (R Z) €10, +o00[ x Z* suchthatR = R, = max{Rz : Z € Z*}.

Apolicy Z € Z is said to beoptimal for the adjustment coefficient criterion if (RZ, Z) solves this
problem.

Considering the exponential utility function with coeféait of risk aversio® > 0, U (w) = —e~
the expected utility of wealth obtained by the insurancegany in a given unit of time i¥ [Ur (Lz)] =
-G(R,Z).

A policy Z € Z is said to beoptimal for the expected utility criterion with coefficient of risk aver-
sion R if it solves, for that particulaR (a fixed constant), the following problem:

Problem 2 Find Z € 2, such thatf [Ug (L;)] = max{E [Ug (Lz)]: Z € Z}.

It follows immediately that a policy is optimal for the exped utility criterion if and only if it is a
minimizer of the functionall — G (R, Z), with the same (fixed) value dt being considered.
The authors prove that the adjustment coefficient problembeasolved in two steps:

1. ForeachR € |0, +o0[ find Zg, the respective optimal policy for the expected utilityterion. Equiv-
alently, findZr = argmin {G (R, Z) : Z € Z};

2. Solve the equation with one single real variable

G (R, Zg) = 1.
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This is to say that the maximal adjustment coefficient eqtiedscoefficient of risk aversion for which
the maximal expected utility that can be attained-is The optimal policy for the adjustment coefficient
criterion coincides with the optimal policy for the expetigtility criterion for this particular value of the
coefficient of risk aversion. The importance of this relatie that one can concentrate on the expected
utility of wealth problem, which is from the mathematicaliptoof view a much easier problem.

The authors prove that there is always an optimal policy tiereéxpected utility criterion and that all
the optimal policies are equivalent from the economic pofriiew, in the sense that the net result between
premiums and claims, and hence the profit, is the same withgpility 1. An equivalent result is then true
for the adjustment coefficient problem.

In order to deduce optimal necessary conditions the autis®eedle-like perturbations. Fix a rein-
surance policyZ € Z. Foreachy > 0, € > 0, a € [0, 1], consider the perturbed reinsurance policy

Z(y), fyéelv,v+el;
ay, if y € [v,v+¢]

Zv,a,a(y) = {

and assume thakmz(y) = lim,_ z(y)/y lim._o+ % defines a functiony — Amz(y) in a

domain having probability equal to one. One important ctdgsnctionals for whichAr is defined with
probability one for eacly € Z is the class of functionals of the type

+oo
(2= ([ awzosma).  zez
where@: R? — R”, v: R” — R are smooth functions. Indeed, for functionals of this classhave:
oQ
Anz(v) = D~y - 5 (v, Z(v)) f(v), a.e.v > 0,

foranyZ € Z. Here,D~ denotes the differential of(«), evaluated at: = f0+°° Qy, Z(y)) f(y)dy. For
this particular class of functionals they prove the follog/theorem:

Theorem 8 Supposethat € Z is optimal for the expected utility criterion with the pailar coefficient
of risk aversionR? > 0. Then,Z satisfies the following conditions.

e flzW) > G(R,Z)Dy- 32 (y, Z(y)), i Z(y) = y;

e flzW) = G(R,Z)Dy- 92 (y, Z(y)), T 0<Z(y) <y

e fleW) < G(R,Z) Dy - 52 (y, Z(y)) . if Z(y) =0,
with probability equal to one.

This theorem is used to calculate the optimal policies fitg¢mthe premium calculation principle used
is the expected value principle, making way for Theo@m

Theorem 9 Assume the reinsurance premium is computed by the expealigel principle. For each
positive value of the coefficient of risk aversion, theren®ptimal policy for the expected utility criterion.
There is an optimal policy for the adjustment coefficientecion. The optimal policy for any of the above
criteria is unique and it is a stop-loss contract.

Note that in the results of this article the amount to be spétit reinsurance is not limited, as it
happened in the previous ones.

When considering that the reinsurance premium principéedsnvex variance related premium princi-
ple, i.e. thatit is a convex premium principle of the form

m(Z) = E[Z] + g(Var(2)),
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whereg: [0, +oo[— [0, +o0[ is a function smooth if0, +oco[ such thaty(0) = 0 andg’(x) > 0, Vx €
10, +o00[ (which happens for the standard deviation principle andséiveance principle withy(x) = 8v/x
andg(z) = Sz, respectively) the authors prove that:

Theorem 10 Ifitis used a convex variance related principle to calcelétte reinsurance premium, then
for each positive value of the coefficient of risk aversitieye is an optimal policy for the expected utility
criterion. There is an optimal policy for the adjustment ffmgent criterion. The optimal policy for any of
the above criteria must be economically equivalent to ort@following policies:

() Z =0, (norisk is reinsured);

(b) a contract satisfying

1. Z(y)+«
=7 —In—2 a.e.y > 0,
y=2Z(y) + o= y >
wherea > 0 is a constant such that
1
0= — H[Z),

29’ (Var(2))

and R is the risk-aversion coefficient or the maximal adjustmedfiicient, according to which
optimality criterion is being considered.

If ¢’ is bounded in a neighbourhood of zero, thér= 0 cannot be optimal for any of the two criteria.

The authors also provide an example where this optimal geraent is compared with the best stop
loss treaty.

2.2.5 Optimal retention for a stop-loss reinsurance under t he VaR and CTE risk measures
(Jun Cai, Ken Seng Tan, 2007 [ 6])

Cai and Tan deal with the problem of determining the optiradmtion)M in a stop loss reinsurance, mini-
mizing the value-at-risk (VaR) and the conditional tail egfation (CTE)Y , nonnegative, with cumulative
distribution functionF'(y) = Pr[Y" < y] and survival functiort(y) = Pr[Y" > y], is the aggregate loss for
an insurance portfolio or an insuref™ = Y A M is the retained claim amount adtl"! = (Y — M),

is the ceded total claimF'(y) is assumed to be a one-to-one continuous functio0ono) with a pos-
sible jump at0 and S~ (y) exists for0 < y < S(0). Furthermore, the authors consider!(0) = ~
andS~!(y) = 0, S(0) < y < 1. The stop-loss reinsurance premium, calculated with tipeeted value
principle, isw(M) = (1 + p)6(M), whered(M) = E[ZM] = [T S(y) dy is the net premium ang > 0

is the relative safety loading” = I + 7(M) is the insurer’s total cost.

The VaR measure, as it is well known, has the advantage ofisitypbeing the100(1 — «)th percentile
of I'M, the probability of the risk exceeding such a value is no @gretaena, 0 < o < S(0) < 1, often
selected to be a small value. Formally, the VaR of the in&uretained loss at a confidence level «
is VaRya (M, a) = inf { y : Pr[I™ > y] < a } and the VaR of the insurer’s total costVaR (M, o) =
inf {y : Pr[T > t] < a}. If IM (T) has a one-to-one continuous distribution function@mnx), then the
VaR is unique.

VaR is not a coherent risk measure and provides no informatiothe severity of the shortfall for the
risk beyond the threshold. The CTE is intuitively appealsigce it captures the expected magnitude of the
loss, given that risk exceeds or is equal to its VaR. Wheniikés continuous, it is a coherent risk measure.
Formally,CTE x (M, a) = E [IM[I™ > VaR;u (M, )] andCTEr (M, a) = E[T|T > VaRr (M, )]
The explicit inclusion of\/ emphasizes that the two risk measures are functions of téetien limit.

The VaR optimization consists in determining the optimé&mnéion M * such that

VaRrp(M*, a) = AI?;% {VaRr(M,a)}.
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Noting that
S(y), 0<y<M

Spu(y) = {O y>M

and
M, 0< M <S8 a)

VaRju (M, a) = {S—l(a)’ M > S_l(a)v

it follows that
VaRyp (M, o) = VaRm (M, o) + w(M)

and Theorenilis established.
Theorem 11 The optimal retention\/* exists and is given by/* = S~1(p*), p* = 1/(1 + p), if and

only if « < p* < S(0) and S~ (a) > S~ !(p*) + 7(S~(p*)). The minimunVaR of T' is given by
VaRp(M*, &) = M* + m(M*).

Remark 5 Itis of interest to note that the optimal retention depenaly on the assumed loss distribution
and the reinsurer’s loading factor.

Remark 6 The following corollary gives the sufficient condition foetexistence of the optimal retention
M*, and it is very easy to apply.

Corollary 1 If o« < p* < S(0) and S~ () > (1 + p)EY, thenM* = S~1(p*) and the minimunVaR
of T'is VaRy (M*, a) = M* + m(M*).

Moving on to the CTE optimization, it consists in determipthe optimal retentiod/ such that

CTEr(M, o) = min {CTEr(M,«a)}.
Simple calculations show th&TEr(M,a) = E[IM + 7(M)[I™ + 7(M) > VaRy(M,«)] can be
decomposed aSTEr (M, a) = CTE;m (M, ) +7(M). Performing a few more computations, it follows
that

M + 7(M), 0<M<S Ha)

» 1 M B
S (oz)—i—w(M)—l——/ S(y)dy, M >S5 («)
@ Js-1(a)

CTEr(M, o) =

and Theoreni2 can be stated and proved.

Theorem 12 The optimal retentiod/ > 0 exists and is given bﬁ = S~ Y(p*), ifand only if0 < o <
p* < 5(0). Moreover,M > S~1(p*)ifand only if 0 < o = p* < S(0).

Remark 7 Comparing to thé/aR optimization, it is of interest to note that both criteriaeid the same op-
timal retentions, but the optimality condition for the apization based on CTE is less restrictive, providing
an added advantage of adopting this criterion.

Remark 8 TheVaR based optimization has an alternative justification frora goint of view of a mini-
mum capital requirement. By assuming riskthe insurer charges an insurance premidand at the same
time sets aside a minimum capital, so that its probability of insolvency is at mast In other words,
givena and ¢, the minimum capital is the minimum solution of the inequaliBt[T" > K + ¢] < «.

In practice, insurers prefer to set aside as little capital possible while satisfying the insolvency con-
straint. So, from the definition dfaRr (M, ), we immediately conclude th& = VaRr(M,«) — c.
SinceVaRr(M*,a) = miny~o{VaRr(M,«)} than the capital requirement is also minimized at the
insolvency constraint.
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2.2.6 Optimal reinsurance under VaR and CTE risk measures (J  un Cai, Ken Seng Tan,
Chengguo Weng, Yi Zhang, 2008 [ 7])

Let againY be a nonnegative random variable representing the aggretmims initially assumed by
an insurer. The cumulative distribution function Bfis F'(y), a continuous strictly increasing function
n (0, 00), with a possible jump af, which allowsY” to be a random surﬁ:f\il X, an important spe-
cial case in actuarial loss models. The survival functioryois S(y). Consider a reinsurance arrange-
ment such that the insurer cedes part of its loss,Z@y), 0 < Z(Y) < Y, to a reinsurer and retains
I(Y)=Y — Z(Y). Z(y) is therefore the ceded loss function af@) is the retained loss function. Let
m(Z) denote the reinsurance premium andll¢Z) = I(Y') + w(Z) denote the total risk exposure of the

insurer in the presence of reinsurance.

As usual, the insurer is now concerned WittY) instead oft” and the objective is to find an appropriate
choice of the ceded loss function, in order to provide ancgiffe way of reducing its risk exposure. Since
T(Z(y)) captures the overall cost of insuring a loss for a ceded losstionZ, a prudent risk management
is to ensure that the risk measures associatedZii#Yy)) are as small as possible.

Motivated by Cai and Tang] (2007)], the authors strive to determine the optimal cddssl functions
that, respectively, minimize VaR and CTE of the total c6$Z). This search is done in the clagsof
ceded loss functiong(y), defined o0, co) and satisfyind) < Z(y) < y, that are non-decreasing convex
functions —and excluding (y) = 0. They assume that the reinsurance premium is calculatedding to
the expected value principle, i.ec(Z) = (1 + p)E[Z(Y)], with p > 0.

The VaR optimization consists now in determini@g such that
VaRT(Z*)(O[) = IZnelg {VaRT(Z) (Oé)} s

VaRp(z) (o) = inf {t : Pr[T'(Z) > t] < o}, 0 <a<5(0).

Defining VaR;(y)(«) as the VaR of the retained loss random variak¥ ), the translation invariance
property of VaR allows us to writ¥aRp(z) () = VaR;y)(a) + 7(Z).

In a preliminary stage, the authors define a subdtaes$ Z, which consists of all non-negative functions
h(y) with the formh(y) = 37, cu j(y— Mo j)+,y > 0;n = 1,2, ..., defined orf0, o), wherec,, ; > 0
and0 < M, < M, o < --- < M, ,,n=1,2,..., and they formally show that any function i is
the limit of a sequence of functions . Consequently, by using some convergence results on VaR (an
CTE), they prove that the optimal functionswhich minimize the VaR (and the CTE) of the total cost
T(h) for h € H, also optimally minimize the VaR (and CTE) of the total c8$t7) for Z € Z.

Under the assumption that the reinsurance premium is detednusing the expectation premium prin-
ciple, it follows that the reinsurance premium on the cedsdht(y) € His w(h) = (1 + p)E[r(Y)] =

(1 + ) {5 eng fr,, S dy}.

Moreover, by definingd,, ; = 1 — Zi CnjandB,; =1— ZJ' L CnjMn i =1,...,n,itis easy
to show that the retained loss is

L(Y) =Y — h(Y)

n Y; Y S Mn,l
:Y—ch,j(Y—ﬂfn_’j)Jr: An,iY+Bn,i, Mn,iSYSMn,i+17 1=1,...,.n—1
J=t An,ny + Bn,na Y > Mn,n-

After some trivial calculations, the authors derive thereggion for the VaR of'(h), at a confidence
levell — a:

S7Ha) + 7w (h), S~
VaRr ) (o) = § An i S~ (@) + By + 7(h), M
ApnS™Ha) + Bpn +7(h), S

n,1
)<an+17i—1 n—1

n,n
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Before stating Theorer3 below, giving the solution, four lemmas are proved and thieiong nota-
tions are introduced:

1 1 [

- M =8 — —/Stdt, > 0;
v (r) v(y) y+p*y y (t) y >
1 o0
u(y) =S"y) + — Sy(t)dt, y=>0
P* Js-1(y)

Theorem 13 For a given confidence levél— «, 0 < a < S(0):

(a) If p* < S(0) and S~ () > u(p*), thenminzez {VaRy(z)(a)} = u(p*) and the minimunvaR s
attained atZ* (y) = (y — M™*) 4.

(b) If p* < S(0) and S~ () = u(p*), thenmingzecz {VaRy(z)(a)} = S~ (a) and the minimunvaR
is attained atZ* (y) = r(y — M*), for any constant such tha0) < r < 1.

(c) If p* > S(0) and S~ () > v(0), thenminzez {VaRr(z)(a)} = v(0) and the minimunvaR is
attained atZ* (y) = y.

(d) If p* > 5(0) and S~* () = v(0), thenminzez {VaRy(z) (o)} = S~*(a) and the minimunvaR
is attained atZ* (y) = rz, for any constant such tha0) < r < 1.

Remark 9 Theoreml3 establishes that for the proposed optimal reinsurance mdbe optimal rein-

surance is a stop-loss reinsurance in cdag a change-loss reinsurance in ca®, and a quota-share
reinsurance in case&) and(d), depending on the risk measures’s level of confidence anskflety load-

ing for the reinsurance premium.

To identify optimal reinsurance under CTE risk measure thdudtion process is analogous to the
situation of VaR criterion (but J. Cai et al. emphasize teatansiderably more complicated to discuss the
optimal ceded loss functions under the CTE criterion thaM&R criterion).

Recalling that the optimal functions i which minimize the CTE of the total co8t(h) for h € H,
also optimally minimize the CTE of the total cds{2) for Z € Z, the problem to be solved is now to find
h* € 'H satisfying the condition

CTET(h*)(OL) = }3%17111 {CTET(h) (Oz)} .

After again proving four lemmas, Theorel with the solution is stated:
Theorem 14 For a given confidence levél— «, 0 < o < S(0):

(@) If o < p* < 5(0), thenminzez {CTEr(z) (@)} = u(p*) and the minimum CTE is attained at
Z7(y) = (y — M*)4.

(b) If @ = p* < S(0), thenminzez {CTEpz)(a)} = u(p*) and the minimum CTE is attained at
any Z*(y) = Z};l en,j(y — My )+ € Hsuch thatM™* < M, < M, s < --- < M,, and
n=12,....

(€) If o < 5(0) < p*, thenmingez {CTEr(z) ()} = u(p*) and the minimum CTE is attained at
Z*(y) = v.

As a suggestion, we believe that perhaps it would be of istécecompare the optimal solutions con-
tained in Theorem&3 and14 with the contract excluded by hypothesi&(y) = 0.
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2.2.7 Optimal reinsurance with general risk measures (Alej andro Balb as, Beatriz Balb as,
Antonio Heras, 2009 [ 1])

Consider an insurance company that in a given period of tieceives a premium and has to pay a
non-negative random amoukit € LY, whereL? is the Banach space &-valued r.v.Y’ on Q such that
Ely|P < oo, p € [1,00), (2, F,Pr) a probability space. Lej: L? — R be the general risk function that
the insurer uses in order to control the risk of its final (&t ¢imd of the period) wealth.

Suppose that a reinsurance contract is signed in such a asththcompany will ced& ¢ L? and will
retain/ =Y — Z ; the reinsurance premium principle is given by a continumurs/ex functionr: L? — R
andP > 0is the highest amount that the insurer will pay for the casitréhe purpose is to choose retention
I* (which is equivalent to choosg* € Z) so as to solve problem P1:

Minimizerer n(c — I — w(2))
{ m(Z) < P, (P1)
where
T ={I: [0,400[— R| I is measurable an@l< I(y) <y, Vy > 0}.

Note thatZ = Z and that the risk measurgis calculated af.;, with L, defined by 8). Note also
that the authors work with this general risk function tiletlast section of the paper, where they propose
three particular risk functionsr (I) = E|I — E(I)|; o2(I) = (E(|I — E(I)|?))*/?; andCVaR,(I) =
max{—E[IW);W € L>*,0 < W < 1/a,0 < a < 1}, VI € L. If it was not for the constraint
m(Z) < P, we could regard this problem as a generalization of the@rpautility of wealth problem.

The risk functiony is in general non-differentiable and so is problem P1 ab&t#, if we define the
convex sef\,, = {W € L% —E(IW) < n(I),VI € LP},q € (1,00],1/p+ 1/q = 1, and assume thak,,
is o(L%, LP)-compact and also thgt(l) = max{—E(IW) : W € A,} holds for everyl € L?, then itis
possible to see th&lis equivalent to problem P2:

Minimize;ez 0
O0+E((c—1—-n(2)W) >0, VIV €A,
m(Z) <P
feR

(P2)

in the sense that solves problenf1if and only if there exist® € R such that#, I) solves the equivalent
problemP2, in which cas# = n(c—I —(Z)) holds. Further assuming thEf{-) remains constant af,,,
E(W) = E > 0 for everyW e A,, and thaty(I) > —E(I)E holds for everyl € L, the two preceding
problems are equivalent to problem P3:

Minimize;cz 0
0+ (c—n(Z)E-EIW) >0, YW eA,
m(Z) <P
feR

(P3)

which is easier to solve, supposing that it is a convex prabl@bserve thaf\,, is composed of those linear
functions that are lower than the risk measgreveryiW € A, can be understood as a particular scenario,
—E(IW) being a distorted expectation &funder the scenario given BYy". After some calculations and
intermediate results, the following theorem is proved.

Theorem 15 (Variational Principle)  Suppose thaf* € Zin L? andZ* =Y — [*. I* is a solution to
problemP1if and only if there exist* € R* andW* € A,, such that

E(I*W*) > E(I*W), YW € A,
E(I*W*) + (E +7)7(Z2*) <E(IW*) + (E+7*)n(Z), VIeTl
m(Z*)< P

T™(n(Z*) — P) = 0.
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Notice thatr* is the Lagrange multiplier associated to the budget coinstra

The authors stress out that these are necessary and sutifficieitions and therefore are a quite useful
tool. Despite the generality of the analysis carried oug,gblutions of the conditions in the theorem will
obviously depend on the specific assumptions about the premiinciple that the reinsurer applies. Balbas
et al. proceed then by using the expected value premiumipknce.7(2) = (1 + p)E[Z(Y)],VZ € LP,
with p > 0, in which cas@* = E(I*W*) — (¢ — (1 + p)E(Z*)E.

Focusing afterwards on verifying whether the most usualstgiance contracts, quota share and stop
loss, solve these conditions, the conclusions that folley a

e (uota share contracts are never optimal in practice: foeetgpion bounded risk measures it would
be necessary that= 0, which does not hold; for deviation measur¥sshould be zero-variance.

e as to stop loss contracts, they are optimal with retentibrthat is to say/" = min{Y, M} is the
optimal contract in the conditions of Theordi®—that are very easy to verify in practice, according
to Balbas et al.

Theorem 16 Suppose thaPr(Y > M) > 0 and(1 + p)E(Y — IM) = P. Then:I* solves problen®1
if and only if there exist$/’* € A, such that:

(@ W* < E+ 7,
(b)y W*(w)=(1+p)E+715we QU ={we Q%Y(w) > M}, and
() EUMW*) > E(IMW),VIV € A,,.

Insuch acas@* = E(IMW*) — (c— (1 + p)E(Y — IM)E.

In the last section of the paper, the authors propose phatidak functions and summarize their results
in three more theorems. In the first two they provide resudtssering that) is oo ando, respectively,
the generap-deviation being defined, (I) = (E(|/I — E(I)[?))'/? = ||[I — E(I)|,. In the third it is
assumed thay = CVaR,(I), CVaRs(I) = (1/a) [y VaR(I)dt = max{-E(IW);W € L>,0 <
W < 1/a,0 < a < 1}, VI € L', a definition that guarantees that t&aR is always coherent and
expectation bounded. In the three cases, when it is podsilikentify a solution, this is of the stop loss
type. As it would be reasonable to expect, when the assungptice equivalent to those given by Cai et
al. in the previous section, the solutions in the third teeoare equivalent to their solutions as well.

2.2.8 Final comments

The articles presented here, with the exception.éf,[deal with optimal reinsurance when the reinsurance
program is arranged on the aggregate claims. In most casagshlts can be generalized to individual
reinsurance, the most common way of placing reinsurancén$tance, the work presented #j peneral-
izes [L9], if the number of claims is Poisson, Binomial or Negativa@&nial).

Most of the displayed results lead to stop loss reinsuramoice, variant of it (change loss), with the
exception of L5]. This difference is not just related to the objective fuotand the premium principle,
but also to the fact that inLf] there is no constraint on the amount of money to spend wétréinsurance
premium. The constraint(Z) < P is active (holds as an equality) whenever functions likevidméance of
the retained risk are chosen. In our opinion it would be moteresting to replace this constraint with one
on the reinsurance loading (of the typ€Z) — E(Z)) < C), which is the real reinsurance cost.

References

[1] BALBAS, A., BALBAS, B., HERAS, A., (2009). Optimal reinsurance with general risk measulresurance
Math. Econom.in press,ht t p: / / dx. doi . or g/ 10. 1016/ . i nsmat heco. 2008. 11. 008

403


http://dx.doi.org/10.1016/j.insmatheco.2008.11.008

(2]
(3]
(4]

(5]
(6]

(7]

(8]

(9]

(10]

(11]
(12]

(13]

(14]

(15]

(16]
(17]
(18]

(19]

404

M. Centeno and O. Simbes

BEARD, R. E., FENTIKAINEN, T. AND PESONEN E., (1977)Risk Theory2®" ed., Chapman and Hall, London.
BoRcH, K., (1969). The optimum reinsurance treaigtin Bull, 5, 293-297.

BoweRs N. L., GERBER, H. U., HICKMAN, J. C., DNES, D. A. AND NESBITT, C. J., (1987)Actuarial
MathematicsSociety of Actuaries, Chicago.

BUHLMANN, H., (1979).Mathematical Methods in Risk Theo§pringer-Verlag, New York.

CAl, J. AND TAN, K. S., (2007). Optimal retention for a stop-loss reinsaennder the VaR and CTE risk
measuresAstin Bull, 37(1), 93-112.

Cal, J., TAN, K. S., WENG, C. AND ZHANG, Y., (2008). Optimal reinsurance under VaR and CTE risk mea-
sureslnsurance Math. Econon¥3, 185-196.

CENTENO, M. L., (2004). Retention and Reinsurance Programmegnicyclopedia of Actuarial Sciencs,
1443-1452.

CENTENO, M. L. AND GUERRA, M., (2008). The optimal reinsurance strategy - the indigicclaim case,
http://cemapre.iseg.utl.pt/archive/preprints/ORS. pdf

CENTENO, M. L. AND SIMOES, O., (1991). Combining quota-share and excess of lossdsamt the reinsurance
of n risks,Astin Bull, 21, 41-45.

DE FINETTI, B., (1940). Il problema dei pienGiornale dell’lstituto Italiano degli Attuarill, 1-88.

GAJEK, L. AND ZAGRODNY, D., (2000). Insurer’s optimal reinsurance strategiasurance Math. Econom.
27, 227-240.

GAJEK, L. AND ZAGRODNY, D., (2004). Optimal reinsurance under general risk meastmsurance Math.
Econom, 34, 105-112.

GERBER, H. U., (1979).An Introduction to Mathematical Risk Theoi§.S. Huebner Foundation Monographs,
University of Pensylvania.

GUERRA, M. AND CENTENO, M. L., (2008). Optimal reinsurance policy: The adjustmeoefficient and the
expected utility criterialnsurance Math. Econon¥2, 529-539.

KALUSZKA, M., (2004). Mean-variance Optimal Reinsurance Contr&ttand. Actuar. J1, 28—41.
KOLLER, B. AND DETWYLLER, N., (1997). APS reinsurancAstin Bull, 27, 329-337.

SIMOES, O.AND CENTENO, M. L., (2008). Reinsurance, ancyclopedia of Quantitative Risk Assessment and
Analysis Melnick, E. and Everitt, B. (eds), John Wiley & Sons Ltd, €tester, UK, 1425-1429..

WATERS, H., (1983). Some mathematical aspects of reinsurdnsarance Math. Econoni2, 17-26.

Maria de Lourdes Centeno Onofre Sindes
CEMAPRE, ISEG, CEMAPRE, ISEG,
Technical University of Lisbon  Technical University of bisn


http://cemapre.iseg.utl.pt/archive/preprints/ORS.pdf

	Basics of Reinsurance
	Insurance and Reinsurance
	Reinsurance Forms
	Premium Principles

	Optimal Reinsurance
	Classical results
	Recent results
	Insurer's optimal reinsurance strategies Leslaw Gajek, Dariusz Zagrodny, 2000
	Optimal reinsurance under general risk measures Leslaw Gajek, Dariusz Zagrodny, 2004
	Mean-variance Optimal Reinsurance Contracts Marek Kaluszka, 2004
	Optimal reinsurance policy: The adjustment coefficient and the expected utility criteria Manuel Guerra, Maria de Lourdes Centeno, 2008
	Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures, Jun Cai, Ken Seng Tan, 2007
	Optimal reinsurance under VaR and CTE risk measures Jun Cai, Ken Seng Tan, Chengguo Weng, Yi Zhang, 2008
	Optimal
	Final comments



