The International Water Academy European Council of Religion Leads
UNESCO International Hydrology Program, Stockholm International Water Institute
SEMINAR

ON

WATER, ETHICS AND RELIGION

Stockholm, 16 August 2007

# CAN THE COMEST AND UNESCO'S "WATER AND ETHICS" INITIATIVE SERVE AS AN ETHICAL GUIDE AND COMMON YARDSTICK FOR DIFFERENT RELIGEOUS DENOMINATIONS?



Prof. Ramón Llamas
Royal Academy of Sciences. Spain
mrllamas@geo.ucm.es

#### **TABLE OF CONTENTS**

- Introduction.
- Short description of the COMEST and UNESCO "Water and Ethics" activities.
- 3. Main global water issues.
- 4. The contribution of the advances of Science and Technology to solve water problems.
- 5. How can COMEST-UNESCO's, Water and Ethics work with the leaders of different religious denominations?
- 6. Conclusions

#### 1. INTRODUCTION (I)

- This presentation tries to be mainly a catalyst for dialogue.
- I will try to be as much down to earth as possible.
- There is perhaps too many declarations. People may be fed up of them.

#### 1. INTRODUCTION (II)

- Good Water Governance requires an equilibrium between the utilitarian aspects and the intangible (religious, cultural) aspects.
- Some religious leaders may think (wrongly) that all scientists are againts religious values.
- For some scientists experimental knowledge is the only way to know. This was rejected in the 2006 IAP Statement on the Teaching of Evolution.

# 2. SHORT REMINDER OF THE COMEST AND UNESCO "WATER AND ETHICS ACTIVITIES" (I)

- COMEST was created by UNESCO in 1998.
- UNESCO appointed in 1998 a working gropup (WG) on the ethics of freshwater uses.
- The WG produced an overview of the situation (published in 2000) and also completed and a dozen of draft Monographs.

# 2. SHORT REMINDER OF THE COMEST AND UNESCO "WATER AND ETHICS ACTIVITIES" (II)

- The conclusions of the WG were accepted by COMEST in 2000 and published in 2001 by the Chair of the COMEST Section on Water.
- In 2001 the COMEST also approved the RENEW Program to foster Water Ethics.

# 2. SHORT REMINDER OF THE COMEST AND UNESCO "WATER AND ETHICS ACTIVITIES" (III)

- In 2002 UNESCO WATER SCIENCE DIVISION continued the topic.
- The previous draft chapters were presented in a CD-Rom in the 2003 World Water Forum. In 2004 and published them in the UNESCO WATER AND ETHICS SERIES.
- In 2007 an Spanish Foundation organized a Workshop on Water Ethics, with the advice of UNESCO U.N. UNIVERSITY and TRANSPARENCY INTERNATIONAL.

#### 3. MAIN GLOBAL WATER ISSUES (I)

#### Three main global water issues can be considered

- 3.1. The MDG of supply drinking water to about 50% one billion and sanitation to 50% of two billion humans by 2015.
- 50L/person/day is the goal. It means about 18 km³/year. This volume is globally irrelevant.
- The funds necessary to solve these supply problems is estimated between 10 and 30 US\$ billions per year. Including sanitation my be 100 US\$ billion.
- This is less than the money spent in pet food by the billion of humans living in the EU, USA and Japan.

#### 3. MAIN GLOBAL WATER ISSUES (II)

#### 3.2. The MDG about malnourishment

About 800 million humans are not sufficiently fed.

■ The global production of food is more than enough to feed those hungry people.

■ The problem is mainly political, as recognised by many authors.

#### 3. MAIN GLOBAL WATER ISSUES (III)

- 3.3. The impact of water development on the ecosystems: "save the planet"
- This is the most important issue from the ecological point of view.
- Main causes are waste waters of cities and industries, but mainly the water use for irrigation.
- Water use for irrigation is about 3000-4000 km<sup>3</sup>/year (more than 200 times the water needed to solve the MDG.

# 4. THE CONTRIBUTION OF THE ADVANCES OF SCIENCE AND TECHNOLOGY TO SOLVE WATER PROBLEMS (I)

- Making aware of these facts to religeous leaders may be an relevant contribution of COMEST-UNESCO.
- I will only mention five activities, which are easyly available and cheap.
- There are others promising advances like Biotechnology or Solar energy, but have problems not solved yet.

# 4. THE CONTRIBUTION OF THE ADVANCES OF SCIENCE AND TECHNOLOGY TO SOLVE WATER PROBLEMS (II)

### 4.1. <u>Virtual water, hydrological footprint</u> and food security (1)

Virtual water is the amount of water necessary to produce a good or a service.

```
1 kgr wheat ...... 1.000 kgr water
```

1 kgr beef ...... 20.000 kgr water

# 4. THE CONTRIBUTION OF THE ADVANCES OF SCIENCE AND TECHNOLOGY TO SOLVE WATER PROBLEMS (III)

### 4.1. <u>Virtual water, hydrological footprint and food</u> security (2)

Hydrological footprint is the amount of water (blue and green) that a humans require for all their needs (about 90% for food).

vegetarian diet read meat diet

~ 800 m<sup>3</sup>/year

~ 1.500 m<sup>3</sup>/year

# 4. THE CONTRIBUTION OF THE ADVANCES OF SCIENCE AND TECHNOLOGY TO SOLVE WATER PROBLEMS (IV)

#### 4.1. Virtual water, hydrological footprint and food security (3)

Total Water resources 110.000 km<sup>3/</sup>year Green Water 70.000 km<sup>3/</sup>year Blue Water 40.000 km<sup>3/</sup>year

#### Human needs

| <u>diet</u> | <u>population</u>      | km³/year (blue + green) |
|-------------|------------------------|-------------------------|
| Vegetarian  | 7.000.10 <sup>6</sup>  | ~ 6.000                 |
| Readmeat    | $7.000.10^6$           | ~12.000                 |
| Vegetarian  | 10.000.10 <sup>6</sup> | ~ 8.000                 |
| Readmeat    | 10.000.10 <sup>6</sup> | ~15.000                 |

betwen 5-13% of Total Water Resources

# 4. THE CONTRIBUTION OF THE ADVANCES OF SCIENCE AND TECHNOLOGY TO SOLVE WATER PROBLEMS (VI)

#### 4.2. Desalination (1)

The most common technology today is REVERSE OSMOSIS (RO)

The energy to desalinize one cubic meter of sea water has decreased from almost 20 kwh/m³ to less than 4 kwh/m³.

# 4. THE CONTRIBUTION OF THE ADVANCES OF SCIENCE AND TECHNOLOGY TO SOLVE WATER PROBLEMS (VII)

#### 4.2. <u>Desalination</u> (2)

- The cost of sea water desalination by RO is about US \$ 0.5/m³.
- This cost is affordable in most cases for urban water supply in cities near the coast.
- Currently in Spain about 7% of the urban population uses (desalinated) sea water.

# 4. THE CONTRIBUTION OF THE ADVANCES OF SCIENCE AND TECHNOLOGY TO SOLVE WATER PROBLEMS (VIII)

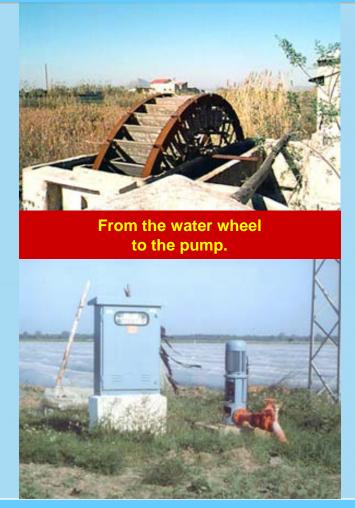
#### 4.3. The Intensive GW use "Silent Revolution" (1)

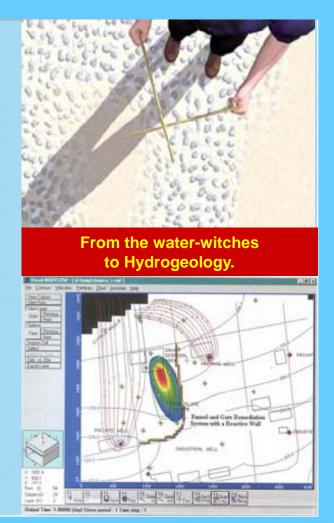
- It has been carried out by millions of modest individual farmers.
- Water decision makers have seldom paid attention to this phenomenon.
- It has produced great socio-economic benefits, as well as some problems (mainly environmental).

# 4. THE CONTRIBUTION OF THE ADVANCES OF SCIENCE AND TECHNOLOGY TO SOLVE WATER PROBLEMS (IX)

#### 4.3. The Intensive GW use "Silent Revolution" (2) The Causes

- Wide availability of cheap well drilling technologies.
- Invention and commercialization of the submersible pump.
- Hydrogeology has become a solid body of science.


HOWEVER, THE SILENT REVOLUTION IS MAINLY MARKET DRIVEN, EXCEPT IN POOR COUNTRIES


### 4. THE CONTRIBUTION OF THE ADVANCES OF SCIENCE AND TECHNOLOGY TO SOLVE WATER PROBLEMS (X)



From the dug-well to the deep borehole.







# 4. THE CONTRIBUTION OF THE ADVANCES OF SCIENCE AND TECHNOLOGY TO SOLVE WATER PROBLEMS (XI)

#### 4.3. The Intensive GW use "Silent Revolution" (3)

- Some negative effects may appear mainly
  - Groundwater quality degradation is usually the most important. It also may be due to poor landuse planning
  - Ecological impacts on surface water courses and wetlands (irrelevant wherever poverty is the main ecological problem).

# 4. THE CONTRIBUTION OF THE ADVANCES OF SCIENCE AND TECHNOLOGY TO SOLVE WATER PROBLEMS (XII)

#### 4.3. The Intensive GW use "Silent Revolution" (4)

#### Frequent "hydromyths"

- Paraphrasing Hamlet:
  "FRAILTY, FRAILTY, THY NAME IS GROUNDWATER"
- "EVERY WATER WELL BECOMES DRY OR BRACKISH"
- Groundwater development is a "PILLAR OF SAND", prone to collapse.

## 4. THE CONTRIBUTION OF THE ADVANCES OF SCIENCE AND TECHNOLOGY TO SOLVE WATER PROBLEMS (XIII)

#### 4.4. RELEVANCE OF REMOTE SENSING AND GIS INTERNET (1)

- A frequent problem in most hydrological conflicts is the illusory accurancy of data. Half-truths are worse than open lies.
- Generally, transparency and availability on these data is scarce.

# 4. THE CONTRIBUTION OF THE ADVANCES OF SCIENCE AND TECHNOLOGY TO SOLVE WATER PROBLEMS (XIV)

- 4.4. RELEVANCE OF REMOTE SENSING AND GIS INTERNET (2)
- The most frequent lack of data are:
  - a) Irrigated surfaces and the types crops.
  - b) The inventory of groundwater uses and rights.
- Remote sensing can usually provide these data in a fast and cheap way.

# 4. THE CONTRIBUTION OF THE ADVANCES OF SCIENCE AND TECHNOLOGY TO SOLVE WATER PROBLEMS (XV)

#### 4.4. RELEVANCE OF REMOTE SENSING AND GIS INTERNET (3)

- Water management requires strong stakeholders participation.
- To achieve this participation transparency from government and education of the stakeholders are crucial.
- GIS system and internet may facilitate education and participation.

### 5. HOW CAN COMEST-UNESCO WATER AND ETHICS WORK WITH THE LEADERS OF DIFFERENT RELIGIOUS DENOMINATIONS? (I)

- There is not a blue print. Each region my be different.
- Ethical communalities seem to exist in water ethics.
- The experience of the Working Group for COMEST (1998-1999) and of the Santander (2007) Workshop allow an optimist outlook

### 5. HOW CAN COMEST-UNESCO WATER AND ETHICS WORK WITH THE LEADERS OF DIFFERENT RELIGIOUS DENOMINATIONS? (II)

These ethical communalities may be based mainly in the three following principles:

- Dignity of every human being.
- Subsidiarity, that requires responsible participation in water governance.
- Solidarity that coordinates personal freedom with the respect to the common good.

### 5. HOW CAN COMEST-UNESCO WATER AND ETHICS WORK WITH THE LEADERS OF DIFFERENT RELIGIOUS DENOMINATIONS? (III)

These principles are less compatible with a non-religious or a materialistichedonistic philosophy.

Groucho Marx: "I dont care for the future generations, what have they done for me?"

#### 6. CONCLUSIONS

- COMEST-UNESCO "Water-Ethics" initiatives are in good agreement with the basic moral tenets of most religeous denominations.
- We should bridge possible gaps of lack of understanding or information between some scientists and some religious leaders.
- This also may require an equilibrium between a extreme rational approach and an extra-emotional approach.

#### THANKS FOR YOUR ATTENTION