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Optimal alternative robustness in Bayesian Decision Theor y

Fabrizio Ruggeri, Jacinto Martı́n and David Rı́os Insua

Abstract. In Martin et al (2003), we suggested an approach to general robustness studies in Bayesian
Decision Theory and Inference, based onǫ-contamination neighborhoods. In this note, we generalise
the results considering neighborhoods based on norms, specifically, the supremum norm for utilities and
the total variation norm for probability distributions. Weprovide tools to detect changes in preferences
between alternatives under perturbations of the prior and/or the utility and the most sensitive direction.

Robustez de preferencias en Teorı́a de la Decisi ón Bayesiana

Resumen. En Martin et al (2003) propusimos una aproximación a estudios de robustez en análisis
bayesiano, basada en entornosǫ-contaminados. En esta nota, generalizamos los resultadosconsiderando
entornos basados en normas, empleando, especı́ficamente, la norma del supremo para las utilidades y
la norma de variación total para las distribuciones de probabilidad. Proporcionamos herramientas para
determinar cuánto podemos perturbar la utilidad o probabilidad originales sin que cambie la alternativa
óptima y la dirección de perturbación más sensible.

1. Introduction

We consider the standard Bayesian decision theoretical framework, see e.g. French and Rı́os Insua (2000)
for a review. A decision maker (DM) makes decisionsa ∈ A, the space of alternatives. We associate
a consequencec ∈ C with each pair(a, θ), whereθ denotes the state of nature. We model the DM’s
beliefs about the statesθ ∈ Θ with a probability distributionπ, which is updated to the posteriorπ(·|x) in
presence of additional informationx provided by an experiment with likelihoodl(x|θ). We also model his
preferences over consequences with a utility functionu, and we associate to each alternativea its posterior
expected utility

T (u, π, a) =

∫

u(a, θ)l(x|θ)π(θ)dθ
∫

l(x|θ)π(θ)dθ

=
N(u, π, a)

D(π)
. (1)

The optimal alternativea∗ maximisesT (u, π, a) in a. Since the outputa∗ of the analysis depends on the
inputsπ andu, the DM may demand ways of checking the impact of these inputson the output. This is
the motivation for much of the recent work in Bayesian robustness, see Ros Insua and Ruggeri (2000) for a
review, and our interest here.
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Specifically, we are interested here in decision robustness, within Bayesian decision theory: our ob-
jective is to find which changes in prior distributions or utility functions produce a change in the optimal
alternative, generalising work in Martin et al (2003). Our starting point is the comparison of the optimal
alternative with possible competitors. We assume that, fortwo alternativesa andb, we have

T (u, π, b) ≤ T (u, π, a), (2)

suggestingb � a (b at most as preferred asa). We are interested in studying whether this preference of
a overb holds when there are changes inu andπ. a could be the optimal alternative andb a competitor.
Specifically, we address these issues:

• How much can we perturb(u, π) in a certain direction until¬(b � a)?

• Is there a specially sensitive direction, so that the preference dilutes more rapidly, ifu andπ are
perturbed in such direction?

We view (u, π) as the initial assessment of preferences and beliefs to be criticised. Perturbations of
(u, π) are constrained to a classU × Γ of pairs utility function-prior distribution, which modelimprecision
in beliefs and preferences. For our purposes, the classes have to be convex, without loss of generality. We
assume also that utility functions are normalised between 0and 1. The use of classes for priors and utility
functions is standard in robust Bayesian analysis.

In Section 2 we introduce basic definitions. Sensitivity of preferences with respect to the utility is
studied in Section 3. Section 4 refers to prior sensitivity,whereas joint sensitivity is addressed in Section 5.
We end up with some conclusions.

2. Basic definitions

We shall analyse properties of the operator

T ab(w, P ) = T (w, P, a) − T (w, P, b), w ∈ U , P ∈ Γ

for a andb fixed, since it explains the preference relation betweena andb. For example, ifT ab(u, π) ≥ 0,
a is preferred tob, for the current assessment(u, π), and we aim at criticising such information, when such
assessment is perturbed. We assume thatD(P ) > 0 for anyP ∈ Γ, so we can study

Nab(w, P ) = N(w, P, a) − N(w, P, b), w ∈ U , P ∈ Γ.

instead ofT ab(w, P )
The results shown in Martin et al (2003) apply when considering ε–contaminations of the current as-

sessment(u, π). We can extend the notion ofε–robustness to general classes of priors and utilities in which
neighbourhoods of(u, π) are given by spheres in a metric, topological space. To do so,we consider a
distanced(·, ·) in the space of priors and/or utilities and modify, accordingly, the definitions in Martin et al
(2003).

Definition 1 (u, π) is ε-robust for b�a within U × Γ, if b�a for all v ∈ U and Q ∈ Γ such that
d((u, π), (v, Q)) ≤ ε.

ε–robustness under changes in either the prior or the utilityare defined similarly, when we consider only
imprecision in preferences and beliefs. We have also the following definition:

Definition 2 Given(u, π), we say that(v, Q) ∈ U ×Γ is ε-sensitive forb�a, whenb�a does not hold for
(v, Q) andd((u, π), (v, Q)) = ε.

We aim at finding(v, Q) for which ε is minimum.(v, Q) is the perturbation of(u, π) leading to faster
reductions inT ab. We call itmost sensitive.
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Definition 3 Given(u, π), (v, Q) ∈ U×Γ is the most sensitive pair forb�a withinU×Γ, if it is ε-sensitive
and for otherε′-sensitive(v′, Q′) ∈ U × Γ, ε ≤ ε′.

Similarly, we defineε-sensitive and most sensitive utility functions and priors.
A reasonable choice ford is given by the norms: inU , the supremum norm, i.e.‖u‖ = supc∈C |u(c)|; in

M, the total variation norm, i.e.,‖δ‖ = supA∈β|δ(A)|; in U ×M, ‖(m, δ)‖∞ = max{‖m‖, ‖δ‖}, where
U is the space of utilities andM is the space of signed measures, which includes the prior probability
measures. We should notice that neighbourhoods of the utility u under the supremum norm overU contain
functions which do not fulfill the assumptions of convexity and normalisation between0 and1 of the utility.
At the same time, neighbourhoods of a probability measureπ under the norm inM contain measures
which are not probabilities. We will restrict the neighbourhoods, to get normalised utilities and probability
measures and illustrate some results about the most sensitive utility/prior under this more general definition.

3. Utility Sensitivity

We consider the important classU of all utility functionsv such thatv(a, θ) = v(θ − a), for all a, θ ∈ ℜ.
This includes the standard utility functions in statistical decision theory, related with the quadratic loss, the
absolute loss and others. As stated, we look for the largest size ε of a neighbourhood aroundu(a, θ) which
does not reverse the rankingb � a, together with the most sensitive utility. We start with unrestricted,
topological neighbourhoods.

Proposition 1 The most sensitive utility inU , under the above conditions, is given by

w(c, θ) =

{

u(c, θ) − ε̂, if ∆(θ) ≥ 0
u(c, θ) + ε̂, if ∆(θ) < 0

,

where∆(θ) = l(x|θ + a)π(θ + a)− l(x|θ+ b)π(θ + b) andε̂ =
Nab(u)

∫

|∆(t)|dt
, which is the size of the largest

neighbourhood ofu in which the ranking is preserved.

PROOF. Let l(θ) = l(x|θ). Consider
∫

[u(a, θ) − u(b, θ)]l(θ)π(θ)dθ ≥ 0, and look for the smallestε
such that

inf
v

∫

[v(a, θ) − v(b, θ)]l(θ)π(θ)dθ ≤ 0, v ∈ U , d(u, v) ≤ ε.

A change of variable leads to
∫

[v(a, θ) − v(b, θ)]l(θ)π(θ)dθ =

∫

v(t)[l(t + a)π(t + a) − l(t + b)π(t + b)]dt =

∫

v(t)∆(t)dt.

As a consequence, we have

inf
v

∫

v(t)∆(t)dt =

∫

∆≥0

[u(t) − ε]∆(t)dt +

∫

∆<0

[u(t) + ε]∆(t)dt = Nab(u) − ε

∫

|∆(t)|dt, (3)

and (3) is equal to0 when considerinĝε. Therefore,̂ε is the threshold neighbourhood size: we haveε–
robustness only for values ofε not greater than̂ε and the correspondingw is the most sensitive utility. �

We provide an example in which the thresholdε is computed.

Example 1 Suppose thatu(t) = e−|t|, π(θ) = e−|θ|

2 and l(θ) = 1 (there is no additional information).
We have that

∆(θ) = π(θ + a) − π(θ + b) =
e−|θ+a| − e−|θ+b|

2
.
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Figure 1. a) ε̂ for different values of b, with a = 0 in Example 1. b) Representation of function Ψ(θ)
in Example 3.

Without loss of generality, assume that0 ≤ a < b. Then,∆(θ) ≥ 0 if and only ifθ ≥ −(a+b)/2. Moreover,

2Nab(u) =

∫ ∞

−∞

(

e−|θ−a| − e|θ−b|
)

e−|θ|dθ = e−a(a + 1) − e−b(b + 1)

and2
∫

|∆(θ)|dθ = 4(1 − e(a−b)/2). Thenε̂ = e−a(a+1)−e−b(b+1)
4(1−e(a−b)/2)

and

w(c, θ) =

{

e−|θ−c| − ε̂, if θ ≥ −(a + b)/2
e−|θ−c| + ε̂, if θ < −(a + b)/2

.

Suppose, for example, thata = 0 andb = 1. Then, it follows that̂ε = .1679. Figure 1 a) represents the
values of̂ε when we comparea = 0 with b > 0. �

Frequently, we want utilities normalised between 0 and 1. Ifwe designate byU
′

the subset of utilities
in U bounded between0 and1, we have that equation (3) becomes

inf
v

∫

v(t)∆(t)dt =

∫

∆≥0

max{0, u(t)− ε}∆(t)dt +

∫

∆<0

min{1, u(t) + ε}∆(t)dt

= Nab(u) −

∫

∆≥0

min{u(t), ε}∆(t)dt +

∫

∆<0

min{1 − u(t), ε}∆(t)dt

Example 2 (Continuation of Example 1) Considera = 0 and b = 1. Using numerical methods to
solve the optimisation problem, we findε̂ = 0.1739. Note that we have found a valueε̂ larger than before.
It was expected since we are considering a subset of the classpresented earlier. �

4. Prior Sensitivity

We turn now our attention to changes in the prior and search for the largest neighbourhood of a priorπ
preserving the rankingb � a, under the topology induced by the total variation norm.

Proposition 2 a) LetΨ(θ) = [u(a, θ)−u(b, θ)]l(x|θ). If there isθ∗ : Ψ(θ∗) = infθ Ψ(θ), then the most
sensitive prior inΓ, under the above conditions, is given byQ∗ = ε̃δθ∗ + (1− ε̃)πIAε̃ , whereδx is a
Dirac measure atx, AC

ε̃ is a measurable subset ofπ–measurẽε with the largest values ofΨ(θ) and
ε̃ is the smallestε such that

Nab(π) −

∫

AC
ε̃

[Ψ(θ) − inf
θ

Ψ(θ)]π(θ)d(θ) ≤ 0. (4)
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b) If there is no suchθ∗, for the ε̃ defined ina), there is a sequence{Qi}
∞
i=1 such that∀δ > 0 there

is nδ such thatQnδ
is t-sensitive, witht ∈ (ε, ε + δ) andQn is at most(επ + δ)-sensitive.

c) π is ε̃-sensitive.

PROOF. a) We search for the smallestε such that

inf
Q

∫

[u(a, θ) − u(b, θ)]l(x|θ)Q(dθ) = inf
Q

∫

Ψ(θ)Q(dθ) ≤ 0, d(π, Q) ≤ ε (5)

It is known, see, e.g., Fortini and Ruggeri (1994), that infima of expectations within a total variation
neighbourhood are attained at measures with a point massε at a point and coinciding with the priorπ on a
subsetA of measure1 − ε. We have

inf
Q

∫

Ψ(θ)Q(dθ) = inf
A

∫

A

Ψ(θ)π(θ)dθ + ε inf
θ

Ψ(θ)

= Nab(π) −

∫

AC

Ψ(θ)π(θ)dθ + ε inf
θ

Ψ(θ). (6)

Since (6) is monotonic, nonincreasing inε, there is a smallestε such that (6) is nonnegative.
b) Let {ti} ∈ A such thatΨ(ti)→ inft Ψ(t) and defineQi by Qi = ε̃δti + (1 − ε̃)πIAε̃ .
c) A consequence ofa) or b). �

When the inequality in (5) becomes an equality, its solutiongivesε̃, as in the next example.

Example 3 (Continuation of Example 1) Considera = 0 andb = 1. We have that

Ψ(θ) =

{

e|θ| − eθ−1 θ < 1
e−θ − e−θ+1 1 ≤ θ

.

Observe thatinfθ Ψ(θ) = Ψ(1) = e−1 − 1 = −Ψ(0) = − supθ Ψ(θ). Because of the shape ofΨ(θ),
see Figure 1 b), we look for an intervalAC = (t1, t2), with t1 < 0 < t2 andΨ(t1) = Ψ(t2). We find,
numerically, that the solution to (5) is given byAC = (−.1618, .0701) with ε̃ = .1086.

�

5. Prior-Utility Sensitivity

Based on the previous results, we present a strategy to compute ε̂ and the most sensitive prior and utility in
the case of a neighbourhood of(u, π) as defined in Sections 2, 3 and 4. We know that

Nab(v, q) =

∫

v(θ) [l(x|θ + a)q(θ + a) − l(x|θ + b)q(θ + b)] dθ =

∫

v(θ)∆q(θ)dθ.

where(v, q) is in anε-neighbourhood of(u, π). Then, we could proceed as follows:
1. Set εl = 0, εu = min{ε-robustness for u, ε-robustness for π}.
2. Set ε = (εu + εl)/2.
3. Search for θ̂ε minimising min

∫

v(θ)∆δ(θ)dθ, where δ is Dirac measure at θ̂ε.
4. Take vε(θ) = max{0, u(θ) − ε} where ∆π(θ) ≥ 0 and vε(θ) = min{1, u(t) + ε} elsewhere.
5. Find subset Aε of π-measure 1 − ε with the smallest value of vε(θ)∆π(θ) and

consider the prior qε which coincids with π on Aε, has point mass ε at θ̂ε and va-
nishes elsewhere.

6. Compute Nab(vε, qε). If |Nab(vε, qε)| < eps (for a given eps), then stop; other-

wise, change εl or εu according to sign of Nab(vε, qε), go back to 2.
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Note that, in step 3,min
∫

v(θ)∆δ(θ)dθ is equivalent to

min
θ∈Θ−

{max{0, u(θ)− ε}l(x|θ + a) − min{1, u(θ) + ε}l(x|θ + b)} = min
θ∈Θ−

φ(θ) (7)

whereΘ− = {θ : ∆(θ) ≤ 0}

Example 4 (Continuation of Example 1) We consider now prior-utility robustness, within our prob-
lem. The following table contains the results obtained fromthe applications of the algorithm above. We
takeeps=0.0001 and solve steps 3,4 and 5 numerically:

εl εu ε θ̂e AC
ε Nab(vε, qε)

0 0.1086 0.0543 -1.05583 (-0.0429,0.0689) 0.0480361
0.0543 0.1086 0.0815 -1.08496 (-0.0651,0.10527) 0.0148017
0.0815 0.1086 0.0950 -1.09985 (-0.0763,0.1240) -0.0035509
0.0815 0.0950 0.0882 -1.09237 (-0.0707,0.1146) 0.0053917
0.0882 0.0950 0.0916 -1.09610 (-0.0735,0.1192) -0.0011112
0.0882 0.0916 0.0899 -1.09424 (-0.0721,0.1169) 0.0003098
0.0899 0.0916 0.9078 -1.09517 (-0.0728,0.1181) -0.0000980

Then, the jointε-robustness is 0.9078.

6. Conclusions

Here, following Martin et al (2003), we have addressed issues concerning joint sensitivity with respect to
the prior and the utility, considering distances based on norms. By analysing changes in differences in
expected utility among alternatives, we are able to detect directions in which perturbations of the assessed
utility and/or probability lead to fastest changes in differences in expected utility and, as a consequence, to
directions in which assessments should be considered more carefully.

The results concerningε-contaminations, discussed in Martin et al (2003), can be incorporated in this
general approach, by changing the distanced by a set function over the space of priors and/or utilities.
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