A BATOR'S QUESTION ON DUAL BANACH SPACES

(dual Banach space/Cantor ternary set. 1980 M.S.C.: 46B10)

M. LÓPEZ PELLICER*

Departamento de Matemática Aplicada. Universidad Politécnica de Valencia. ETSIA. Apartado 22012. E-46071 Valencia (SPAIN)

E-mail: mlopez@mat.upv.es

Presentado por Manuel López Pellicer el 16 de diciembre de 1998. Aceptado el 15 de marzo de 1999

ABSTRACT

We obtain a characterisation of the nonseparability of the dual of a separable Banach space X by the existence of an operator T from X into $C(\Delta)$, being Δ the Cantor ternary set, giving an answer to a question proposed by E.M. Bator in 1992.

RESUMEN

Obtenemos una caracterización de la no separabilidad del dual de un espacio de Banach separable X mediante la existencia de cierto operador T de X en $C(\Delta)$, siendo Δ el conjunto ternario de Cantor, dando una respuesta a la pregunta propuesta por E.M. Bator en 1992.

1. INTRODUCTION

It is said that x is a condensation point of the topological space X if every neighbourhood of x is uncountable. If all the points of X are condensation points we can determine two non void disjoint balls B_{11} and B_{12} of radius less than 1, two non void disjoint balls B_{21} and B_{22} (B_{23} and B_{24}) of radius less than 1/2 contained in B_{11} (B_{12} , respectively) and so on. Then we have that

$$\Delta = (\overline{B}_{11} \cup \overline{B}_{12}) \cap (\overline{B}_{21} \cup \overline{B}_{22} \cup \overline{B}_{23} \cup \overline{B}_{24}) \cap \dots$$

is homeomorphic to the Cantor ternary set with dyadic subsets $\overline{B}_{11} \cap \Delta$, $\overline{B}_{12} \cap \Delta$,...

If the topological space X has an uncountable quantity of points and verifies the second axiom of numerability, then the union Z of open countable subsets is a countable set, because a countable family of these open sets cover Z.

Then every point of Y = X-Z is a condensation point of Y. In particular, if A is an uncountable subset of a compact and metrizable topological space, \overline{A} contains a copy of the Cantor ternary set.

Then, if X is a separable Banach space such that its dual X* is not separable, we can find a Cantor ternary set in the weak* dual unit ball. By making an appropriate use of the Hahn-Banach theorem C. Stegall [4] and E.M. Bator [1] found the Cantor ternary set in such a way that the characteristic functions of the Cantor dyadic subsets can be uniformly approximated by elements of X.

In fact, by the nonseparability of the unit sphere S_{X^*} given $\mu > 0$ we can determine by transfinite induction $A = \left\{ x_{\alpha}^* : \alpha < \omega_1 \right\} \subset S_{X^*}$ and $\left\{ x_{\alpha}^{**} : \alpha < \omega_1 \right\} \subset X^{**}$ such that $x_{\alpha}^{**} (x_{\alpha}^*) = 1$, $\left\| x_{\alpha}^{***} \right\| \leq 1 + \mu$ and $x_{\beta}^{**} (x_{\alpha}^*) = 0$ when $\alpha < \beta < \omega_1$. This can be done since once determined $\left\{ x_{\alpha}^* : \alpha < \beta \right\}$ and $\left\{ x_{\alpha}^{**} : \alpha < \beta \right\}$ the closed linear hull of $\left\{ x_{\alpha}^* : \alpha < \beta \right\}$ is separable, and then there is a x_{β}^{**} in X^{**} such that $x_{\beta}^{**} (x_{\alpha}^*) = 0$ if $\alpha < \beta$ and $\left\| x_{\beta}^{**} \right\| = 1 + \mu$. The distance from the origin to the hyperplane $x_{\beta}^{**} (x^*) = 1$ is $1/(1 + \mu) < 1$, implying that the intersection of this hyperplane and S_{X^*} is not void. Taking x_{β}^* equal to a point of this intersection we finish the induction.

We can suppose that every point of A is a weak*-condensation point, deleting a countable family if it were necessary.

Let $\delta > 0$. Given x_{α}^* and x_{β}^* with $\alpha < \beta$, we know that there exists x_{β}^{**} with $\left\|x_{\beta}^{**}\right\| < 1 + \eta$ such that

$$x_{\beta}^{**}(x_{\alpha}^{*}) = 0$$
 $x_{\beta}^{**}(x_{\beta}^{*}) = 1$

^{*} Supported by OPVI project 003/034 (1998) and DGESIC PB97-0342.

By the weak* density of B_X in $B_{X^{**}}$ we can find x_β with $\|x_\beta\| < 1 + \eta$ and such that

$$\left|x_{\beta}(x_{\alpha}^{*})\right| < \delta = 0 \quad \left|x_{\beta}(x_{\beta}^{*}) - 1\right| < \delta$$

The preceding two inequalities enable us to determine two weak* neighbourhoods V_1^* and V_2^* of the points x_{α}^* and x_{β}^* such that

$$\left|x_{\beta}(x^*)\right| < \delta = 0 \text{ for } x^* \in V_1^* \text{ and } \left|x_{\beta}(x^*) - 1\right| < \delta \text{ for } x^* \in V_2^*$$

Now we take x_{γ}^* in V_1^* such that $\beta < \gamma$. If we apply the preceding reasoning to the points x_{β}^* and x_{γ}^* we can find some x_{γ} with $\|x_{\gamma}\| < 1 + \eta$ and two weak*-neighbourhoods $W_{11}^* (\subset V_1^*)$ and $W_{12}^* (\subset V_2^*)$ of the points x_{γ}^* and x_{β}^* such that

$$\left|x_{\gamma}(x^*)-1\right| < \delta \text{ for } x^* \in W_{11}^* \text{ and } \left|x_{\gamma}(x^*)\right| < \delta \text{ for } x^* \in W_{12}^*$$

holding

$$\left|x_{\beta}(x^*)\right| < \delta$$
 for $x^* \in W_{11}^*$ and $\left|x_{\beta}(x^*) - 1\right| < \delta$ for $x^* \in W_{12}^*$

Then the difference between $x_{11} = x_{\gamma}$ and $x_{12} = x_{\beta}$ acting on the weak* closure of $W_{11}^* \cup W_{12}^*$ and the characteristic functions corresponding to the weak* closure of W_{11}^* and W_{12}^* is δ . By an obvious dicotomic induction process there follows the following Stegal theorem (4):

Let X be a separable Banach space such that X^* is nonseparable. Then for every $\varepsilon > 0$, there exists a subset Δ of B^* which is homeomorphic to the Cantor set, along with subsets $\left\{C_{ni}\right\}_{n=1}^{\infty} \sum_{i=1}^{2^n} of \Delta$ weak* homeomorphic to the dyadic intervals, and a sequence $\left\{x_{ni}\right\}_{n=1}^{\infty} \sum_{i=1}^{2^n} in X$ such that $\left\|x_{ni}\right\| < 1 + \varepsilon$ for all n, i and

$$\left|x_{ni}(x^*) - \chi_{C_{ni}}(x^*)\right| \le \varepsilon 2^{-n}$$
 for all $x^* \in \Delta$

 $\chi_{C_{ni}}$ being the characteristic function on the set C_{ni} .

Stegall's result is equivalent to the nonseparability of X*. In fact, given x^* in Δ , let $\left\{i_n\right\}_{n=1}^{\infty}$ be the unique sequence such that $x^* \in C_{ni_n}$. Then from $\left|x^*\left(x_{ni_n}\right)-1\right| \leq \varepsilon 2^{-n}$ it follows that if x^{**} is a weak* cluster point of the sequence $\left\{x_n\right\}_{n=1}^{\infty}$ then we have x^{**} (x^*) = 1. If $y^* \in \Delta - \{x^*\}$ there is some n_0 such that $y^* \notin C_{ni_n}$ for $n > n_0$, and then we have $\left|y^*\left(x_{ni_n}\right)\right| \leq \varepsilon 2^{-n}$ for $n > n_0$, implying

 x^{**} (y^{*}) = 0. Therefore Δ is weak discrete, thus norm discrete, and consequently X^{*} is nonseparable.

2. BATOR'S PROBLEM

From Stegall's result it follows that the natural evaluation map $T: X \to C(\Delta)$ given by $T(x)(x^*) = x^*(x)$ has dense range. Bator (1, example 5) shows that the existence of a continuous linear map T from a separable Banach space X onto a dense subspace of the space of real continuous functions defined on the Cantor ternary set Δ does not characterise separable spaces with nonseparable duals, because the range of the mapping T from 1^2 into $C(\Delta)$

given by $T(\{\alpha_n\}) = \sum_{n=1}^{\infty} \frac{1}{n} \alpha_n t^n$ is dense, since it contains the polynomials, and $(1^2)^*=1^2$ is separable.

Bator (1. Page 85) asks for what property of a continuous linear map T from a separable Banach space X into the space $C(\Delta)$ of the real functions defined on the Cantor ternary set Δ would be able to characterise separable Banach spaces with nonseparable dual. A very interesting result in this direction had been obtained previously by Pelczynsky-Hagler theorem (2, 3) that states that 1^1 embeds in a separable Banach space X if, and only if, there exists a continuous linear surjection from X into $C(\Delta)$.

The following result gives an answer to Bator question.

Proposition 1. Let X be a separable Banach space. X^* is nonseparable if, and only if, given $0 < \varepsilon < \frac{1}{2}$ there is a continuous linear mapping $T: X \to C(\Delta)$ with dense range such that $T((1+\varepsilon)B_X)+\varepsilon B_{C(\Delta)}$ contains the characteristics functions $X_{C_{ni}}$, $1 \le i \le 2^n$, $1 \le n < \infty$, of the dyadic intervals of Δ .

Proof. If X* is nonseparable then, following with the notation given in the preceding Stegall theorem, we have that the sequence $\left\{x_{ni}\right\}_{n=1}^{\infty}\sum_{i=1}^{2^n}$ belongs to $(1+\varepsilon)B_X$ and $\left|x_{ni}(x^*)-\chi_{C_{ni}}(x^*)\right| \le \varepsilon 2^{-n} < \varepsilon$ for every $x^* \in \Delta$, which means that if T is the natural evaluation map $(T(x)(x^*) = x^*(x))$ then $\mathcal{X}_{C_{ni}} - T(x_{ni}) \in \varepsilon B_{C(\Delta)}$.

Conversely, let us suppose that there is a continuous linear mapping $T: X \to C(\Delta)$ with dense range such that $T((1+\varepsilon)B_X + \varepsilon B_{C(\Delta)})$ contains the characteristic functions $\chi_{C_{ni}}$, $1 \le i \le 2^n$, $1 \le n < \infty$, of the dyadic intervals of Δ .

As the range of T is dense we have that T^* is one-to-one. As usual, we identify Δ with a weak* compact subset of the unit sphere of $C(\Delta)^*$. Then T^* (Δ) is an uncountable weak* compact subset of X^* and we are going to prove that it is norm discrete, implying the statement.

By hypothesis given $0 < \varepsilon < \frac{1}{2}$ and C_{ni} there is $x_{ni} \in (1 + \varepsilon)B_X$ such that

$$||Tx_{ni} - \chi_{c_{ni}}|| \le \varepsilon$$

and, therefore, for each $\mu \in \Delta$ we have

$$\left| \left(T x_{ni} \right) (\mu) - \chi_{c_{ni}} (\mu) \right| \le \varepsilon \tag{1}$$

Therefore, given two different points δ and δ' in Δ we may find C_{ni} such that $\delta \in C_{ni}$ and $\delta' \notin C_{ni}$. Then, replacing μ by δ and δ' in (1), we have:

$$|(Tx_{ni})(\delta)-1| \leq \varepsilon$$

and

$$|(Tx_{ni})(\delta')-0| \leq \varepsilon$$

From these two inequalities it follows:

$$\left|\left\langle x_{ni}, T^*\delta - T^*\delta'\right\rangle\right| = \left|\left\langle Tx_{ni}, \delta - \delta'\right\rangle\right| = \left|\left\langle Tx_{ni}\right\rangle(\delta) - \left\langle Tx_{ni}\right\rangle(\delta')\right| \ge 1 - 2\varepsilon$$

and, from $||x_{ni}|| \le 1 + \varepsilon$ we deduce that

$$||T^*\delta - T^*\delta'|| \ge \frac{1-2\varepsilon}{1+\varepsilon}$$

which shows that $T^*(\Delta)$ is norm discrete.

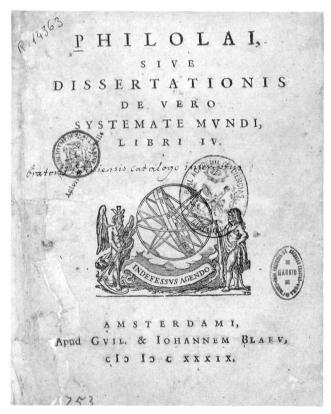
Which the same technique the following proposition may be proved:

Proposition 2. Let X be a separable Banach space. X^* is nonseparable if, and only if, there is a continuous linear mapping $T: X \to C(\Delta)$ with dense range, two positive numbers m and δ and a natural number n_0 such that $T(mB_X)+\delta B_{C(\Delta)}$ contains the characteristic functions $\chi_{C_{ni}}$, $1 \le i \le 2^n$, $n_0 \le n < \infty$, of the dyadic intervals of Δ corresponding to the steps $n_0 + 1$, $n_0 + 2, \ldots$.

REFERENCES

- Bator, E.M. (1992) A basic construction in duals of separable Banach spaces. Rocky Mt J. Math. 22 (1), 81-92.
- Hagler, J. (1973) Some more Banach spaces which contains 1¹. Studia Math, 46, 35-42.
- Pelczynsky, A. (1968) On Banach spaces containing L₁. Studia Math, 30, 231-246.
- Stegall, C. (1973) Banach spaces whose duals contain 1¹ (Γ) with applications to the study of dual L¹ (μ) spaces. T.A. Math. Soc. 206, 213-223.

SERIE «LIBROS ANTIGUOS» REAL ACADEMIA DE CIENCIAS



Philolaus

Philolai, sive Dissertationis de vero systemate mundi, libri IV. -Amsterdami : apud Guil. & Iohannem Blaeu, 1639.