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ABSTRACT

In this article, Expert Systems techniques, based on
Logic and Computer Algebra, are applied to particular
decisién-making procedures in Medicine. A result, relating
tautological consequence and the ideal membership pro-
blem, stands at the basis of these techniques and allows
and efficient implementation in CoCoA.

1. INTRODUCTION

This article addresses the application of Expert Syste-
ms based techniques (related to Logic and Computer Alge-
bra) to the field of evaluation of decision-making criteria
on the fitness of medical diagnosis. The article is comple-
mentary to (6).

The decision-making criteria on the fitness of medical
diagnosis are usually collected in tabular format (4). Ne-
vertheless, no efficient mechanical method for both eva-
luating the correctness and extracting new knowledge from
the table exists. Such a limitation entails serious difficul-
ties for the members of the medical profession who use the
tables, because these tables sometimes contain more than
a thousand information items.

In this article we describe an efficient computational
method, based on logic and algebra, that automatically eva-
luates the correctness of those tables and extracts new in-
formation from the information implicitly contained in the
tables. The method requires a prior translation of the tables
into an Expert System based on many-valued and modal
logic (that allows imprecise knowledge to be handled). As

an illustration, a table drawn up by experts in coronary
diseases (8) will be studied.

An expert system consists of a «knowledge base» and
an «inference engine». The knowledge base consists, in the
rule-based expert systems (denoted «RBES»), of «rules»,
«facts» and some other information items (of which the
most important are the «integrity constraints»). The infe-
rence engine is a program oriented to the extraction of
consequences from the knowledge base. An inference en-
gine based on Computer Algebra and developed by the
authors is used in this article.

The rules in the knowledge base are logical formulae
that translate assertions (also called «knowledge items» in
the rather inadequate Artificial Intelligence jargon). These
assertions have the form «IF the conjunction of such and
such presuppositions holds, THEN the disjunction of such
and such conclusions also holds». The logical symbols that
translate presuppositions and conclusions are called «lite-
rals».

The facts are simple logical formulae that translate
simple knowledge. They are divided into «potential facts»
and «given facts». Potential facts are all the literals that,
belonging to the conjunction on the left-hand side of any
rule, do not belong to the disjunction on the right-hand
side of any rule. Given facts are all or some of the poten-
tial facts that an expert or a user have singled out for
particular purposes.

Integrity constraints (referred to as IC) are logical for-
mulae that translate the condition, assessed by the experts
that have provided the information for constructing the
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table, that two or more facts cannot hold at the same time.
The negation (NIC) of each IC must be added to the RBES
as new information.

1.0.1. Example. Let us take a look at an elementary
example of a RBES (based for the sake of simplicity on
Boolean logic) that illustrates these concepts. Also for the
sake of simplicity, the consequents consist of only one ele-
ment, despite the fact that they generally are disjunctions
of elements. As is known, =, A, v and — are named «con-
nectives» in logic, respectively meaning, «no», «and», «or»
and «implies».

Rule 1. A A-B = C
Rule 2. C—> D

Rule 3. D — =E
Rule 4. F - E

Letters like A, or letters preceded by —, such as B,
are examples of literals.

Potential facts are A, -B and F, and, as mentioned
above, «fact» is any potential fact which it is of interest to
single out. A rule «is fired» iff all the literals in the ante-
cedent are facts (or «derived facts», which are described
below in an example). Firing corresponds to the formal
logic rule of «modus ponens».

In some cases, the consequent of one rule is a part of
the antecedent of another rule, such as C in Rules 1 and
2. If A and —B are facts, then by firing R1, C is obtained;
and from C and the Rule 2, D is obtained. Thus the literals
C and D are derived facts.

An integrity constraint (denoted IC) is, for example,
C A —E. We have thus new information to be added to the
RBES, the negation NIC: (C A-E) of the IC: C A—E. Any
other additional information is denoted as «ADDI».

Suppose that in a RBES formed only by the rules 1,2
and 3, to which the formula NIC is added, A and -B are
facts. In this case, the firing of the rules gives the IC,
which contradicts the NIC.

If there were an RBES formed only by the rules 3 and
4 and the facts D and F, the firing of the rules would lead
to the logical contradiction E A—E

1.0.2. Definition. A RBES will be said to be «in-
consistent» with respect to some given facts iff a logical
contradiction or an integrity constraint is obtained when
its rules are fired. The inconsistency obtained from an in-
tegrity constraint 1C becomes a logical inconsistency when
the corresponding NICs are added to the RBES. An alge-
braic translation of inconsistency is given in 3.1.

In the three-valued and modal logic-based RBES to be

considered in this article, the literals are propositional va-
riables, preceded or not by the connective = or by two new
connectives: L[] (which means «it is necessary that») and
<& (which means «it is possible that»), or by any admissi-
ble combination of these symbols. The rules have the fo-
llowing format:
o X[1] A 0, X[2) A .. Ao X[n] > O, X[n + 1] V.. VoX]s5])
where the symbols «o» represent =, [, <, any of the
admissible combinations, or even the empty symbol. If, in
addition, imprecise knowledge needs to be expressed about
a rule, the symbols [], <, and their combinations, with or
without =, must be written before the entire rule and/or its
antecedent and/or its consequent.

In the logic on which the RBES to be addressed relies
(Lukasiewicz’s three-valued logic augmented with modal
operators), if A is an IC, its NIC is not the simple negation
of A, but the formula [1-A.

The truth-values of this logic are determined by the
functions:

H, H, Hy: 2z — 2,
H,H, H, :2i> z,

defined in the tables below (0 represents «false», 1 repre-
sents «not-determined» and 2 represents «true».

H. H, Hp
0 2 0] 0 0 | 0
1 1 1| 2 1 |0
2 0 2 | 2 2 | 2
HJo 1 2 HIJo 1 2 HJ0 1 2
0(0 1 2 o010 0 0 012 2 2
1112 101 1 1|1 2 2
212 2 2 2(0 1 2 210 1 2

By means of the standard generalization, these functio-
ns can be used to define a truth-valuation v for any formu-
la.

1.0.3. Definition. A propositional formula Q, is a
«tautological consequence» of the propositional formulae
0. Qs . O, (denoted {Qy, Oy, .. Q,,) = Qp) iff for any
truth valuation v, such that v(Q,) = v(Q,) = ... = v(Q,,) =
2 (true), then v(Q,) = 2 (true). In the general case of a p-
valued logic, p — 1 substitutes 2 (see section 3).

1.0.4. Definition. The ser {Q,, O,, ..., O,,} is a «con-
tradictory domain» iff for any formula Q of the language
in which Q,, Q,, ..., Q,, are expressed, {Q,, O,, ..., 0,,} =
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Q. The name «contradictory domain» is justified bacause
if any formula follows from {Q,, Q,, ..., Q,,}, the formulae
that translate contradiction will also follow.

2. DESCRIPTION OF THE TABLE
AND TRANSLATION TO A RBES

2.1. Description of the Table

A set of symptoms and other medical data (effort test
positive, negative or not done, disease of one, two, or three
blood vessels, LVEF value) was presented to a group of
ten experts on coronary diseases. They were then asked
about the pertinency of taking certain actions (revasculari-
zation, PTCA, CABG). LVEF means «Left Ventricle Ejec-
tion Fraction», CABG means «Coronary Artery Bypass
Grafting» and PTCA means «Percutaneous Transluminal
Coronary Angioplasty».

Both the data presented to the experts and their opinio-
ns were collected in a table containing 216 information
items. Only some of these items, sufficient to understand
the argument in the article, are transcribed below. This
information will first be translated to rules of a RBES, to
be later processed computationally.

A. Effort test positive
A.l. Left common trunk disease
A.1.1, Surgical risk low/moderate %

% LVEF (F) Revascularization PTCA CABG
F > 50 1: 12345678 + A 2: 12345678'+° ~ + A
50> F>30 5:12345678+° + A 6: 12345678',° - + A
302 F>20 9:12345678'° + A 10: 1234567'81% — + A

A.1.2. Surgical risk high

% LVEF (F) Revascularization PTCA CABG
F > 50 3: 12345678 + A 4: 12345'67'8'+7 — + A
50 2 F>30 7:12345678% + A 8: 123456'7'8%5 — + A
30 2 F > 20 11: 1234567'8%7 + A 12: 123456278%5 —~ + 4

The experts were informed in the six cases 1, 2, 5, 6,
9, 10 that, for a certain patient, the data are: effort test
positive, suffers from left common trunk disease, surgical
risk is low/moderate and LVEF is in a given percentage
bracket. In the cases 3, 4, 7, 8, 11, 12 the datum «surgical
risk low/moderate» changes to «high», while the other data
are unchanged. The experts were then asked about the per-
tinency of revascularization, PTCA and CABG.

Let us proceed with the transcription of the cases we
have chosen in order to explain the meaning of the digits,
letters and symbols used.

A.2. Three blood vessels disease
A.2.2. Saurgical risk high%

% LVEF (F) Revascularization PTCA CABG
F250>30 s 20: 123°4%5%78%9 + + D

A.4. Two blood vessels disease, proximal anterior
descendent not affected

A.4.2. Surgical risk high

% LVEF (F) Revascularization PTCA CABG
F250 oo 40: 1°%2!3%45'6789 7 - A

A number (1, 2, ..., 216) has been assigned to each row
of digits, symbols +, —, *, and letters A, D, I of the table.
The rules R1, R2,..., R216 of the RBES to which the table
will be translated are numbered according to these num-
bers.

Each superscript expresses the number of experts that
assigned the value, from 1 to 9, to the fitness of the action.
For example, in 1, one expert assigned the value 8 and
nine experts the value 9 to the fitness of revascularization.

The symbol «#» indicates the median.

The information given by the superscripts is resumed
in the table as follows. The symbol «+» means it is unfit,
the symbol «—» means it it is unfit. The symbol «7» means
undecided fitness.

The letter A means that there is agreement among the
experts about the fitness, unfitness or undecided fitness of
revascularization, PTCA or CABG. The letter D means
disagreement. The letter I means undecided agreement.
There is disagreement when the opinion of at least three
experts is reflected as superscripts over the digits from 1 to
3 and the opinion of at least another three as superscripts
over the digits from 7 to 9. There is agreement when there
are no more than two opinions reflected outside an interval
of {1,3], [4,6] or [7,9] that contains the median. In any
other case, there is undecided agreement 1.

2.2. Translation of the Table to a RBES

The relation between the four data and the correspon-
ding list of digits and symbols in, for instance, 1 can be
reinterpreted as the statement: «/F the effort test of a pa-
tient is positive AND he suffers from left common trunk
disease AND his surgical risk is low/moderate AND his
LVEF is over 50\%, THEN the experts have assessed that
revascularization is fit»; moreover, «there is agreement (A)
in this assessment». These «/F-THEN» assertions can be
translated to logical formulae, which are precisely the rules
of which the RBES will consist.

The first step to take is to assign a propositional varia-
ble, denoted X[i] (possibly preceded by ), to each datum
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and therapeutic action. All the variables are noted, even
though not all of them will be used in the article.

« Surgical risk low/moderate: -X[1], high: X[1].

 Effort test positive: X[2], negative: -X[2], undeter-
mined: ¢ -X[2] (translated as «it is possible that the
effort proof is negative»).

* Common left trunk disease: X[3], three vessels di-
sease: X[4], two vessels disease : X[5], one vessel
disease: X[6].

» Anterior proximal vessel affected: X[13], not affec-
ted: =X[13].

* LVEF > 50%: X[7], 50% = LVEF > 30%: X[8], 30%
LVEF = 20%: X[9].

e Revascularization: X[10], PTCA: X[11], CABG:
X[12].

These variables combine to form rules, under the follo-
wing conventions.

The symbols [1 and & do not precede the variables
(or their negations) if they represent data. The reason is
that the data should be taken into account only if they are
presented under either a high or acceptable degree of cer-
tainty. A high certainty degree for, for instance, X[3] is
represented as [1X[3], and acceptable, as simply, X[3]. As
in logic the implications [1X{3] — X[3] and X[3] — X[3]
both hold, if the data are given under either a high or an
acceptable degree of certainty, the rules that contain them
in their antecedent can be fired. But if given under a low
certainty degree (represented by <X[3] in our example),
such as O X[3]  X[3], the rules that contain them in their
antecedent cannot be fired.

The different possibilities are translated as follows
(note that they are listed in decreasing order of fitness):

X +A — [Ix
X +1 - X
x +D - Ox

x 7 (the three cases) - tautology
X -D - S x
X -1 - i
X A - O

Unlike the approach taken in (6), we chose on this
occasion to translate the information items that contain «?»
by a trivially true implication. The reason is that we used
the convention of not inferring any conclusion from rules
where pertinency is not decided. This convention is lax
compared with the one used in [6], but it is better suited
for detecting only serious logical contradictions rather than
those produced, for instance, by the concurrence of diffe-
rent experts opinions on the cases «?».

Under the translation used in (6), one conclusion was
that some rules leading to contradiction should be changed
(the suggestions that we made to the experts as a result
were judged acceptable). Here, we tried an approach which
is as close as possible to the original table. Nevertheless,
contradictions arise in this approach too, as will be shown
later.

For example, information items 1, 2, 3 and 4 are trans-
lated to RBES rules as follows.

R1: =X[1] AX[2] AXI[3] AX[7] — [JX[10]
R2:-X[1] AX[2] AX[3] AX[7] — O-X[11] ALIX[12}).
R3: X[1] AX[2] AX[3] AX[7] > [J-X[10]
R2: X[1]1 AX[2] AX[3] AX[7] — [1-X[11] ADIX[12]).

An example of a rule that expresses disagreement (<),
is (see item 20 in the table):

R20: ~X[1] AX[2] AX[4] AX[8] — O X[11] v OX[12]).

2.2.1. Observation. Why use A in some rules and v
in others? Simply, for the convenience of expressing expert
knowledge more adequately. For instance, there is no con-
flict in declaring that PTCA is appropriate and that CABG
is not in R2: OJ-X[11] ATJX[12}). But in R20, we chose to
write v between two affirmations of pertinency (under
disagreement) < X[11] and < X[12), because, even though
the experts judge both actions (PTCA and CABG) appro-
priate, the external information that both cannot be simul-
taneously applied (this is expressed as [1-X[11] AX[12})
has to be taken into account. This formula is the NIC co-
rresponding to the IC: X[11] AX[12].

2.3. About the consistency of the RBES

The translation of the table into an RBES allows two
important processes to be carried through: verify if the
table contains anomalies and, once these have been correc-
ted, extract new knowledge.

Let us consider, for instance, the rule that corresponds
to item 40 of the table.

R40: X[1] AX[2] AX[5] A=X[13] AX[7] — tautology
A1-X112].

What would happen if a patient whose data are X[1],
X[2] and X[7], suffered at the same time from left common
trunk disease (X[3]) and two vessels disease with anterior
proximal descendent not affected X[5] A-X[13])?

In this situation, as both rules R4 and R40 can be fired,
a simple visual logical examination of the consequents ob-
tained shows a contradiction (rule 4} strongly rejects PTCA
and strongly recommends CABG, whereas rule 40 is in-
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conclusive about PTCA but strongly rejects CABG). Thus,
there exists an anomaly in the table.

Let us analyze the different alternatives:

1) It is impossible for a patient to suffer from both
diseases or it is possible that he suffers from both but they
are not going to be treated simultaneously.

In such a case, the maximal consistent sets of facts
must be carefully determined. Now, for instance, x[7], x[8]
and x[9] (% LVEF: > 50, >30 and < 50, > 20 and < 30) are
mutually exclusive. Similarly, the different diseases (x[3],
x[4], x[5] Ax[13], x[5] A-x[13]) are also mutually exclu-
sive.

i1) It is possible that a patient suffers from both di-
seases and they are going to be treated simultaneously.

a) There exists the possibility of treating one of the
two diseases with one technique and the other with the
other technique.

The same solution as in the previous paragraph would
be adequate here.

b) It has to be decided which technique to apply: it is
not possible to apply one technique to one disease and a
different technique to the other disease.

This conflict has a simple but very interesting solution
from the strictly logical viewpoint. The conflict vanishes
if, for instance, rules R4 and R40 are substituted by NR4
and NR40:

NR4: X[1] A X[2] A X[3] AX[7] » O-X[11] A
OX[12]).

NR40: X[{1] A X[2] A X[5] AX[13] A X[7]— tautolo-
gy A<OX[12]).

Clearly, an interaction with the experts is necessary in
order to search for the best representation of knowledge
from the medical viewpoint. In particular, it seems that the
case in which two diseases are to be simultaneously treated
was not considered by the experts who produced the table.

The logic-algebraic theory and its implementation in
the CoCoA \cite{Capani} language that we outline below
allow this type of contradictions to be detected automati-
cally. Indeed, the above-mentioned contradiction (and
many others) were found this way.

3. TAUTOLOGICAL CONSEQUENCE AND THE
IDEAL MEMBERSHIP PROBLEM

In this section, a result that relates the concept of tau-
tological consequence with the ideal membership problem
in a polynomial ring, actually Z, [x, x,, ..., x,], where p is

any prime number (for example, p = 3 for the three-valued
case) is described.

The numbers 0, 1, ..., p — 1, are considered as the truth
values of a p-valued and modal logic. For instance, p — 1
can represent the value «true», 0 can represent «false» and
the reminding elements can represent intermediate truth
values.

Let X = {X, X,, ..., X,} and C = {c, ¢y, ..., ¢,} e a
set of propositional variables and a set of connectives,
respectively . In the three-valued and modal case C = {¢,
=,0=,g=U0,¢,=v¢5= A cg=—>). Po(X, X,,
..., X)) represents the set of well-formed propositional for-
mulae from X and C. The letter Q (with or without subs-
cripts) represents a generic element of P, (X|, X, ..., X,).

Z, [x,, x,, ..., x,] is the polynomial ring in the variables
Xy» X5, ..., X, with coefficients in z, The polynomial varia-
bles x,, x,, ..., x, correspond to the propositional variables
X, Xy, ..., X, of X respectively. The letters g and r repre-
sent generic elements (generic classes of polynomials) of
z, [x;, xp ..., x,J/I, where [ is the ideal:
< xf - x;, X} - x5,..., x! ~ x, > (i.e., the ideal generated
by the polynomials xf — x|, x§ — x,,..., x7 — x,).

A class of polynomials is assigned to each formula of
Pq (X, X,, ..., X,), by firstly defining a function:

5
5 (Zp[xl, Xy e xn]/l) = Z,[x, Xgs oy x, |11
where s; is the «arity» of each connective c;

In the case of binary connectives (the unary case is
stmpler), )3 has the form:
—1 p-1
Za,-’k @+ 1;a, € z,

fila. r) =

gl

T
o
Eoal

and it passes through the points {(i, k, H, (i, k)):i ke {0,
l,..., p — 1}}, where the I-Ij are the functions of which
H,, H,, H_, mentioned in the introduction are particular
cases.

A Maple V program, which is not transcribed here for
the sake of brevity, determines (following the Lagrange
interpolation method) the coefficients a;,. In particular, for
Lukasiewicz's three-valued logic with modal operators
(where 0, 1, 2 denote false, undetermined, true, respective-
ly), it provides the following translations of the basic logi-
cal formulae to polynomial classes

£la) = (2+2,) + 1
fv(q, r) = (q2r2+q2r+qr2+2qr+q+r) + 7
g r) = (2q2r2+2q2r+2qr2+qr) +1

(g r) = (2(]2r2 +2¢%r +2gr* +qr+2q+2) + 1
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The function & below, interacting with functions, Jj
translates any propositional formula to a polynomial class:

01 Pe(Xy, Xy s X,) = Z,[xy, Xy s 2,1/ 1

defined recursively:

6(X;) = x;+1, foralli =1,.., n.

90 = £(6(@).-. 8(a, )} ifQisc,(e. . 2,)

The reduction of logical formulae to classes of polyno-
mials allows the development of an algebraic theory lea-
ding to the following result, which we enunciate without
proof.

3.0.1. Idea. A formula Q, is a tautological conse-
quence of other formulae Q,, ..., Q,, iff the polynomial that
translates the negation of Q, belongs to the ideal genera-
ted by the polynomials that translate the negations of Q,,...,

Formally:

3.0.2. Theorem. Let Q, Q,, ..., Q,, € PAX, X,, ..,
X,). The following assertions are equivalent:

(D) {Qp @y - O} E Q

(i) f.(6(@)) € < £.(6(Q)) . £(6(Q,)) >

The first proof of this theorem appeared in [1] and was
improved in [3]. Another approach, taken by the authors of
the present article from the viewpoint of Algebraic Geo-
metry, can be found in [9].

It is well known that to check whether a polynomial
belongs to an ideal, it has to be determined whether or not
the «Normal Form» (NF) of the polynomial, modulo the
ideal, is 0. Effective methods, such as Grobner Bases’,
exist (see, for instance, [10]).

3.1. Application to the study of consistency

A set of propositional formulae {Q,, O, ..., 0,,} < P,
(X, X5, ..., X,) is inconsistent when {Q|, ©,, ..., Q,,} is a
contradictory domain (see section 1). This, in algebraic
terms, is translated into the ideal J, generated by the nega-
tions of Q,, @5, ..., Q,,» being the whole ring, which hap-
pens if and only if 1 € Jin Z, [x,, X,, ..., x,]/I. This last
condition is checked by calculating whether or not the
Grobner basis of the ideal is {1}.

This method of verification of inconsistency is new [7]
and differs substantially from the known approaches (a
description of Expert Systems verification methods appears

in [5]).

CoCoA cannot work in quotient rings so far. Thus,
instead of checking whether the ideal J of Z, [x}, x,, ..., x,}/
I is the whole ring, we will check whether the ideal I + J
of z, [x,, X5, ..., x,] is the whole ring.

3.2. Application to the extraction of new knowledge

As a result of the above theorem, to check whether or
not any given formula that translates a certain information
item follows from the RBES, we simply have to check
whether the polynomial translation of its negation belongs
to the ideal generated by the polynomial translation of the
negations of the facts, rules, etc. considered. As mentioned
above, it is well known that this last condition holds if and
only if the «normal form» of the polynomial modulo the
ideal is O.

4. IMPLEMENTATION IN CoCoA

CoCoA (Computations in Commutative Algebra) is a
very efficient algebraic computation language, specialized
in calculations of Grobner bases in polynomial rings over
finite characteristic fields'. An implementation in this lan-
guage of the process of detecting inconsistencies in (a part
of) the RBES described in the article is presented below.

CoCoA does not admit the definition of infix opera-
tors, so that it requires that logical formulae be written in
prefix form. NEG, POS, NEC, OR1, ANDI1, IMP will

denote -, <, [, v, A —, respectively.

The polynomial ring A and the ideal I are declared first
(see section 3).

A :: =7 (3) [x][1...13]];
USE A;
I := Ideal (x[1]73 —x[1], ..., x[13]*3 —x[13];

The connectives are translated into polynomials of the
quotient ring A/l as follows (see the form of the functions
J; in section 3). NF means «Normal Form» (OR1 and
ANDI, respectively, are used instead of OR and AND,
because the latter are reserved words in CoCoA).

NEG (M) : = NF2+2*M, I);
POS (M) :
NEC (M) :

NF(Q2*M"2, I);

NF(MA2+2*M, I);

OR1 (M, N) : = NF (MA2*¥NA2+MA2*¥N+M*NA2+2 %
M*N+M+N, I);

! More information about CoCoA can be obtained from
cocoa@dima.unige.it or directly at the web page: http: //
cocoa.dima.unige.it
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AND1 (M, N) : = NF 2*MA"2*¥NA2+2*MA2*N+2*M#*
NA2+M*N, I);

IMP (M, N) : = NFQ*MA2¥NA2+2+¥MA2*¥N+2*¥M*
NA2+M*N+2*M+2, I);

Subsequently the rules are written in prefix form, for
example:

R8:=IMP (ANDI1(ANDI(AND1(x[11],x[2]),x[3]).x[8]),
NEC (ANDINEC(NEG(x[11]),NEC(x[12]})));

R20:=IMP(AND1(ANDL(AND1(x[1],x[2]),x[4]),x[8]),
ORI1(POS(x{11]),POSK[12]));

and the potential facts of these rules are declared:

F2:=NEG(x[1]); F3:= x[2]; F4:= x[3]; F5:= x[4];
F8:= x[8];

In order to define the ideal generated by the polyno-
mials that translate the negations of the facts and rules, it
suffices to write down:

K:=Ideal(NEG(F2), NEG(F3), NEG(F4), NEG(F5),
NEG(F8), NEG(R8), NEG(R20));

4.1. Detection of Inconsistency with CoCoA

Let us suppose that we have the case ii)b) of 2.3 (the
most interesting case from the logical viewpoint).

In order to determine whether or not {F2, F3, F4, F6,
F7, F10, R4, R40} is consistent, it is enough to calculate
the Grobner basis of the corresponding ideal:

R4:=IMP(AND1(ANDI(AND1(x[1], x[2]), x[3]), x[7]).
ANDI(NEC(NEG(x[11])), NEC(x[12])));

R40:=IMP(AND1 (AND1 (AND1 (AND1(x[1], x[21),
x[5]), NEG(x[13])),
x[7]), AND1 ( 2, NEC (NEG(x[12]))));

(constant 2 represents the tautology)

J4:=Ideal( NEG(F2), NEG(F3), NEG(F4), NEG(F6),
NEG(F7), NEG(F10), NEG(R4),NEG(R40));
GBasis(I1+]4);
[1]

and thus, there is inconsistency.

It is important to note that, really, the process of RBES
verification is more complex than it seems to be. Initially, a
lot of rules must be examined at the same time (in our case,
we started with 48). If the program detects inconsistency, it
is necessary to exactly locate the rules that produce it in
order to debug the problem. For this purpose, we use a
simple program, which we have named CONSIST, that takes

the set of facts, NICs and ADDIs and adds rules one by one,
checking the consistency of the system before adding the
next one. The example shown here presents the simplest
case: a direct incompatibility between two rules has been
detected and located (there are also other problems).

The solution to the conflict proposed in 2.3 can be
checked immediately with CoCoA:

NR4:=IMP(AND1 (AND1 (AND1 (x[1], x[2]), x[3]), X[7D),
ANDI(NEC(NEG(x[111]}), POS(x[12])));

NR40:=IMP(AND1 (AND1 (ANDI (ANDI (x[1],
x[2]), x[5]), NEG(x[13])), x[7]).
ANDI (2, POS(NEG(x[12]))));

J5:=Ideal( NEG(F2), NEG(F3), NEG(F4), NEG(F6),
NEG(F7), NEG(F10),
NEG(NR4),NEG(NR40) );}

GBasis(I1+J5);}

is not [1]} and thus there is consistency.

4.2, Extraction of New Knowledge with CoCoA
Let us determine whether
O=(OX[111 vOX[12])
&=X[11] = =< X[12])
$-X[11] A-X[12])

follow from the rules R3, NR4, R7, R8, R11, R12, R20,
R39, NR40, the facts F2, F3, F4, F5, F6, F7, F10 and the
NIC:

16:=Ideal(NEG(F2), NEG(F3), NEG(F4), NEG(F5),
NEG(F6), NEG(F7), NEG(F10), NEG(R3),
NEG(NR4), NEG(R7), NEG(R8), NEG(R11),
NEG(R12), NEG(R20), NEG(R39), NEG(NR40),
NEG(NIC));

GBasis(I+J6);

is not [1], thus there is no inconsistency. Therefore it makes
sense to check if the above mentioned formulae follow
from these rules, facts and the NIC (if there were inconsis-
tency, they would trivially follow):

NF(POS(NEG(ORI(NEC(x[11]), POS(x[12])))), I+]6);
0

(thus the first formula follows)
NF(POS(NEG(IMP(POS(NEG(x[11])),
POS(NEG([121))), I+I6);
0

(thus the second formula follows)
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NF(AND1(POS(NEG(x[111)), POS(NEG(x[12])),
1+16);

is not O (thus the third formula does not follow).

The complete process of verification and extraction of
knowledge takes, in this case, around ten seconds on a
Pentium-based PC with 128 Mb of RAM.

5. CONCLUSION AND THANKS

The method described in the article illustrates the ad-
visability of raising practical problems to the theoretical
level (Formal Logic and Algebra in our case), at which
means of simplifying reasoning and preparing efficient
computer implementations are found. The method can be
generalized to any type of information containing impreci-
se knowledge that could be translated into propositional
many-valued and modal logics. So far, we have processed
cases with as many as 200 propositional variables in three-
valued logic using this method (the article only deals with
13).

We would like to thank P. Lizaro, K. Fitch, C. Be-
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their collaboration. We are especially grateful to Professor
Sixto Rios Garcia for his invitation to submit this article to
the «Revista de la Real Academia de Ciencias».
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