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1 Introduction

Berger, Bernardo and Sun’s thought-provoking paper offersa Bayesian resolution to the difficult philo-
sophical problem raised by inductive inference. In a nutshell, the philosophical problem plaguing inductive
inference is that no finite number of past occurrences of an event can prove its continuing occurrence in
the future. It is thus natural to seek probabilistic reassurance for our instinctive feeling that an event re-
peatedly observed in the past must be more likely to recur than an event that happened only infrequently.
Consequently, as the authors note, the “rule of succession”and the “natural law of induction” have en-
gaged the attention of philosophers, scientists, mathematicians and statisticians for centuries. And rightly
so because—despite philosophical qualms about induction—science cannot progress without inductive in-
ferences. The vintage of the induction problem testifies to its difficulty and the pervasiveness of inductive
inferences in science reinforces our ongoing efforts to strengthen its underlying logic and fortify its foun-
dations through statistical reasoning. These circumstances necessitate diverse approaches to establish a
rigorously justifiable framework for inductive inference.

Berger et al. have made a sophisticated contribution to the literature on rigorously justifying inductive
inference, and they have innovatively illuminated an illustrious path blazed by none other than Laplace
himself. At the risk of appearing mean-spirited, my main complaint with their solution is the technical
virtuosity demanded by their methodology. The mathematical complexities of finding a reference prior are
daunting enough to dissuade all but the most lion-hearted inventuring on the search. Given the importance
of the problem that Berger et al. address, it may be worthwhile to dredge up an existing solution that seems
to be unknown in the statistics literature. In that spirit, Iwill discuss an alternative approach that produces
one of the key results that Berger et al. derive through theirreference prior. My approach has the merit of
being considerably simpler and more flexible at the expense of possibly not satisfying all the four desiderata
listed in Bernardo (2005) ([2]) for objective posteriors, but it does quickly produce a central result in Berger
et al. and offers insights into the value of additional replications—an issue that lies at the heart of inductive
inference and scientific inquiry. First a few thoughts on therelevance of replications to the topic at hand.
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2 Inductive inference and replications

Bernardo (1979) ([3]) defines a reference posterior in terms of limiting operations carried out on the amount
of information about the unknown parameter, obtained from successive independentreplications of an
experiment. Bernardo’s definition of reference priors through replications resonates well with a key guiding
principle of good scientific research. Replications are theheart and soul of rigorous scientific work—
findings that are replicated independently by investigators increase our confidence in the results (Cohen
1990 ([4])). Thus, replications play a fundamental role both in the mathematical definition of a reference
posterior and in the scientific process. Clearly, replications are intimately related to inductive inference. It
would thus seem conceptually attractive, if, as a by-product of modifying the Laplace Rule of Succession
to strengthen its logical basis, we are also able to figure outthe optimal informational role of replications.

3 Improving the Laplace rule of succession

Using a reference prior: The solution proposed by Berger et al. to the limitations of the Laplace Rule
of succession is displayed in equations (20) and (27) of their paper. Using their notation, the authors’ result
is that:

πu(En) =
n + 1/2

n + 1
(1)

which yields faster convergence to unity than the Laplace Rule. The Laplace Rule yields the probability
πu(En) = n+1

n+2 . To obtain equation (1), Berger et al. use a hypergeometric model (equation (4) in their
paper) together with the reference prior shown in equation (13) of their paper. Equation (13) is obtained by
using the Jeffreys prior (equation (12) in Berger et al.) in conjunction with an asymptotic argument which is
justified on the basis of exchangeability, as the authors have shown elsewhere. Their logic is sophisticated
and beautiful but the price paid for such beauty is that the resultant derivations are arduous. Indeed, Berger
and Bernardo (1992) ([1]) themselves admit that the general reference prior method“is typically very hard
to implement.” Under these circumstances, perhaps the search for a simpler approach is defensible and
meritorious of some attention.

Using a beta prior: In Raman (1994) ([7]), I show that the following rule of succession generalizesthe
Laplace Rule. Suppose thatp is the probability that a scientific theory is true, and assume that the prior for
p is Be(p |α, β); if we subsequently obtain ‘n’ confirmations of the theory, then, using the notationbn(En)
to suggest its beta-binomial roots, the probability of observing an additional confirmation is given by,

bn(En) =
α + n

α + β + n
(2)

Equation (2) follows easily from a result in DeGroot (1975 ([5]), p. 265) guaranteeing equivalence of
the sequential updating ofBe(p |α, β) with the updating ofBe(p |α, β), conditional on having observed
“n” successes. The Jeffreys priorf(p) = 1

π
1√

p(1−p)
, 0 < p < 1, is a special case resulting from the choice

α = β = 1

2
in the priorBe(p |α, β). For that choice of prior, equation (2) reduces to the equation (20) of

the Berger et al. paper:

Forα = β = 1/2, bn(En) =
n + 1/2

n + 1
(3)

Polya (1954) ([6]) recommends a number of properties that an “induction-justifying” rule ought to
have—and the beta-binomial rule (equation (2) above) exhibits those desiderata.

Using a general prior, not necessarily beta: It would be natural to object that the above deriva-
tion is driven by a specific prior—the Beta distribution. However, in Raman (2000) ([8]), I show that a
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generalized rule of succession can be obtained for a generalclass of priors which includes the Beta distri-
bution as a special case. The generalized rule of successionincludes as special cases, the original Laplace
Rule, the Beta-Binomial rule and the rule derived in Berger et al. through a reference prior. The exact
result is the following: ifg(p) is a prior density function with a convergent Maclaurin series representation
g(p) ∼ ∑

i≥0 aip
i, then, using the notationgn to denote the rule of succession under this general prior

density,

gn =
∑

i≥0

ai

i + 1 + n

i + 2 + n
(4)

As special cases,a0 = 1, ai = 0, i ≥ 1, yields the Laplace rule of succession, the choice ofai as the
coefficients in a power-series expansion ofBe(p |α, β) results in the beta-binomial rule, which includes, as
a special case, the rule of succession for the Jeffreys’ prior derived in Berger et al. through a reference prior.
Clearly,gn may be viewed as a linear combination of beta-binomial rulesof succession or, with equal right,
as a linear combination of Laplacian rules of succession.

From an applied perspective, the Beta density’s flexibilityand tractability make it an attractive choice for
a prior; from a theoretical perspective, the above results show that it suffices for the purpose of generating
a more plausible rule of succession than the Laplacian rule,and, in fact, yields results that are identical to
Berger et al. Finally, although I do not delve into the topic here, the Beta prior permits derivation of an
adaptive controller that shows the value of performing an additional replication as a function of our prior
beliefs about the theory, the accumulated evidence in favorof the theory, the precision deemed necessary
and the cost of the replication (Raman 1994) ([7]).

Using the Jeffreys’ reference prior in Berger et al.: I should remark on the following property of
the Jeffreys’ reference prior which appears somewhat odd tome. WhenN = 1, it assigns a probability of
0.50, for R, which makes sense. Furthermore, asN → ∞, the probabilityπr(R |N) for R = N , tends
to 0 —a result which is attractive. However asN increases, at intermediate values ofN , the behavior of
πr(R |N) is somewhat odd forR = N . Let me explain.

Consider equation (13) in Berger et al.

πr(R |N) =
1

π

Γ(R + 1

2
) Γ(N − R + 1

2
)

Γ(R + 1)Γ(N − R + 1)
, R ∈ {0, 1, . . . , N}, (13)

soR = N implies

πr(R |N) =
1

π

Γ(N + 1

2
) Γ( 1

2
)

Γ(N + 1)
.

Consider the behavior of the above function asN grows large. The first derivative ofπr(N |N) is a
complicated expression involving the polygamma function,but if we plotπr(N |N) as a function of ‘N ’,
then we obtain insights. Plotting the function in Mathematica as a function ofN (see Figure1), we find
thatπr(N |N) at first drops very steeply but that the rate of decline slows down dramatically forN > 20.
For example, for100 ≤ N ≤ 200, the probability drops from0.056 atN = 100 to 0.039 atN = 200.

Thusπr(N |N) is insensitive to new information for large but finite valuesof N , which is the case that
would be of greatest pragmatic interest in scientific theory-testing. It would be useful if the authors could
comment on the significance of this property for natural induction.

4 Conclusion

My thoughts on the elegant analysis of Berger et al. are driven by an entirely applied perspective. Conse-
quently, I seek the most parsimonious and mathematically tractable route to model-building. The alternative
approach I have described lacks the technical sophistication and mathematical rigor of the authors’ refer-
ence prior approach—its primary justification is its ease ofuse and pliability at addressing a broader set
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Figure 1. πr(N |N) as a function of N .

of issues (such as the development of an optimal controller to balance the tradeoffs involved in replicat-
ing experiments). I realize that these broader issues are not necessarily relevant to the authors—but even
so, I would argue that the authors may benefit from thinking about how reference priors can address these
questions better than my naı̈ve approach based on a mathematically convenient family of conjugate priors,
because their reflection on the applied concerns I have raised could lead to new results that would broaden
the scope and scientific impact of reference priors on researchers across multiple disciplines.

In conclusion, I applaud the authors for their innovative application of a powerful new technique to an
important and vexing problem of ancient vintage, and hope that some of their future work on reference
priors makes the methodology less mysterious, thereby disseminating their ideas to a wider audience and
paving the way for new applications based on reference priors.

References
[1] BERGER, J. O.AND BERNARDO, J. M., (1992). On the development of reference priors. inBayesian Statistics,

4. (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) Oxford: University Press, 35–60 (with
discussion).

[2] BERNARDO, J. M., (2005). Reference analysis, inHandbook of Statistics, 25, 17–90. D. K. Dey and C. R. Rao,
(eds.) Amsterdam: Elsevier.

[3] BERNARDO, J. M., (1979). Reference posterior distributions for Bayesian inference.J. Roy. Statist. Soc. B, 41,
113–147 (with discussion). Reprinted inBayesian Inference, 1 (G. C. Tiao and N. G. Polson, eds.) Oxford:
Edward Elgar, 229–263.

[4] COHEN, JACOB, (1990). Things I have Learned So Far,American Psychologist, 45, (December), 1304–1312.

[5] DEGROOT, MORRISH., (1975).Probability and Statistics, Reading, MA: Addison-Wesley.

[6] POLYA , GEORGE, (1968).Mathematics and Plausible Reasoning, Vol. 2, Princeton, NJ: Princeton University
Press.

[7] RAMAN , KALYAN , (1994). Inductive Inference And Replications:A BayesianPerspective,Journal of Consumer
Research, March,20, 633–643.

[8] RAMAN , KALYAN , (2000). The Laplace Rule of Succession Under A General Prior, Interstat, June, 1,
http://interstat.stat.vt.edu/interstat/articles/2000/abstracts/u00001.html-ssi.

Kalyan Raman
Medill IMC Department,
Northwestern University,
USA
k-raman@northwestern.edu

148


	Introduction
	Inductive inference and replications
	Improving the Laplace rule of succession
	Conclusion

