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Isogroups and isosubgroups
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Abstract. The main goal of this paper is to give a mathematical foundation, serious and consistent, to
some parts oBantilli’'s isotheory We study the isotopic liftings of groups and subgroups and we also deal
with the differences between an isosubgroup and a subgroup of an isogroup. Finally, some links between
this isotheory and the standard groups theory, referred to representation and equivalence relations among
groups are shown.

Isogrupos e isosubgrupos

Resumen. El principal objetivo de este aculo es proporcionar un fundamento maégito, consistente

y riguroso, a determinadas partes destteoiia de Santilli Enél se realiza el levantamiento i$gico de

los grupos y subgrupos, estaddose asimismo la diferencia entre un isosubgrupo y un subgrupo de un
isogrupo. Se muestran finalmente algunas relaciones entre estaisgté&oteofa standard de grupos,
referentes a los temas de represediadie grupos y de relaciones de equivalencia entre grupos.

1. Introduction

In 1978, the Italian-American theoretical physicist and mathematic Ruggero Maria Santilli proposes a
generalization of conventional Lie's theory by using the concepsatbpy(in the Greek sense of being
"axiom-preserving”, also calleotopic lifting), which implies the origin of the actually known likean-

tilli's isotheory (see [2]). To do this, he extends the basic uwmit+1, diag(+1, ..., +1), ...) of the initial

structure to a generalized utit= 1(x, 2, T , ..., s, T, ...), calledisounit which depends on the coordinate

and their derivatives, on the densjtyon the temperatureand, in general, on any magnitude of the physic
environment of the system in which we are. By using it, Santilli does a step-by-step generalization of the
more important mathematical structures, obtaining other new ones, characterized by the fact of having the
same properties as the initial ones, while the new units satisfy more general conditions than the verified
by the initial ones. Santilli gives the name mfathematical isostructures these new structures. In this

way, he studiegsogroupsisorings isofields isovectorspaceandisoalgebraqsee [3], [4], [5] and [11], for
instance).

It allowed him to get in a fast way some development of physical applications, principally in Quantum
Mechanics and Dynamical Problems of particles and antiparticles. Santilli's isotopies allow to map any
given and fixed linear, local and canonical structure into its most general possible non-linear, non-local
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and non-canonical forms which are capable of reconstructing linearity, locality and canonicity in certain
generalized isospaces and isofields within the fixed inertial coordinates of the observer.

However, in the last years, Santilli has found some mathematical inconsistencies in his early formulation
of the isotheory. Due to it, Santilli and other mathematicians have studied the isotopic liftings of Functional
Analysis and Differential Calculus (see [1] and [6]). It has allowed to get some important applications in
Physics (see [7], [8], [9] and [10], for instance).

So, as Santilli's isotheory needs even a consistent mathematical foundation, Santilli himself has pro-
posed several subjects of research to the international mathematical-scientific community. One of them
consists on proving the existence of isostructures corresponding to the lifting of structures already known,
although they do not have a practical application in Physic. Santilli thinks that it would be good to convince
the scientific about the relevance of his research, which would give bigger consistence and reliance to his
isotheory.

In this paper, we try to partially response to Santilli's petition, by studying a possible lifting of the
simplest algebraic structure: the group structure. However, as there is already some studies about it (see
[11]), we complete them, give also some examples and show how the subgroups can be isotopically lifted
by using the Santilli's model to construct isoproducts. Getting this last question is the main goal of this
paper.

To do this, we previously give in Section 2 some basic definitions related to isotopic liftings. Section 3 is
devoted to the study of isogroups. Next, in Section 4, we obtain Theorem 2, which assures the construction
of an isosubgroup, giving some examples, too. We also distinguish between subgroups and isosubgroups of
an isogroup. Last two sections are devoted to study some applications of Santilli's isotheory: representation
and equivalence relations among isogroups, respectively, and some links among these concepts and the
standard groups theory.

2. Preliminaries

Remember that for a given and fixed mathematical structurispéopyor isotopic liftingis any lifting of it,
which gives a new mathematical structure verifying the same basic axioms (or properties) as the first. This
new structure is calleidotopic structureor isostructure(see [2]).

In 1978 (see [2]), Santilli proposes a possible model of isotopy, called Santilli’s isotopy, which allows to
construct the namethathematical isostructurdased on an isounit This isounit can be obtained starting
from the following definition:

Let E be any mathematical structure, defined on a set of elenderitet V' O C' be a set with an inner
law x and an unit element. Such a seV’ is said to be thgeneral set of the isotopy.et I € V' be such
that its inversd” = 1!, with respect to the law, exists.I will be calledisotopic unitor isounitand it will
be the basic unit in the lifting of the structufe T will be theisotopic elementFinally, I and* are the
isotopy elements

Then, Santilli proposes to reach an isostructﬁrstarting from the structuré’, by considering the
following construction levels:

a) Conventional level (see [2]) Itis the initial mathematical structure, formed by a set of elements and
the laws defined among them. In this level appear the usual mathematical structures with respect to
usual units:F = E(a, +, X, ...).

b) General level It is the general seV/, in which are, particularly, the isotopy elements used in
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the isoproduct construction model, that 18,= V(a, *,*,...). It is important to note thabl, =
E(a, *,*,...) (the restriction oV to ) must verify the same axioms as the initial structiire

c) Isotopic level (see [2]) It is the mathematical isostructure obtained when lifting, that is=
E(@,+,%,...).
Itis formed by an isotopic set and the isolaws on it. Elements of such set, which are usually denoted
by using a hat, are given with respect to the isouniEofSo, fixed and given the isostructure, x),
with isounit, where! is the unit of £ with respect tor, these elements ate= ax 1, where Santilli
defines the laws asaxb = a * b. See then thafixI = a1 = a = Ixa, which implies thaf is
the unit element of’ with respect tox.
It is immediate to check that the mappihg £ — E:a—disa bijection, because it is onto by
construct|on and it is also injective, duedo# b, for all a,b € E such thata # b. Indeed, ink,
a=axl # bxI = b with respect to the isountt of £; in the same wayas=axe#bxe=5»b
in £/, wheree is the unit element of’ with respect tox.

d) Level of projection: (see [6]) It appears when we consider the mathematical isostruttreterred
to the isotopy elements used in its construction. Its elements are denoted by a line superposed to the
hat™ of elements ofZ, that s,

In this way, if we use the isotopy elementgwith unit 7) and1 to constructE , then we obtain a
structureF in the level of projection, whose elements are referred to thelugit= a1 = (a*f) w1

The mappingr : E-E:a— 7(a) = a is namedprojection In general, we say that an element of
Eis projectedon its corresponding associated element beIonginE.tcNote that, by construction,
the mappingr is onto.

In a first stagef is only doted with laws when is linear with respect to the isolaws associated with
E. ‘So, fixed an isostructurgl, X ), if = is linear with respect to, the law is defined on& by
axb=axb. Insuch a caser : (E,X) — (E, ?) is an onto morphism .

Therefore, this level of projection is the most important in practice, because it allows to obtain some
mathematical models which would be no possible under usual units.

There exists still another level which joins both conventional and isotopic levels. It exibenatic
level([2]), which identifies every mathematical structure verifying the same axioms.

So, in a schematic way, as the different construction levels appearing in an isotopic lifting, as the
relations among them can be observed in the following diagram:

. General level
Conventional level
(V, %%, ...)
(B, +, x,...) (E,*,%,...)
! i !
Level of projection Projection Isotopic level
(E,%,%,...) (B, %,%,...)

Finally, we will say that an isotopic lifting of the structufeis injectiveif X =V, forall X,Y € E
suchthaty =Y. Itis equivalent, by construction, to say that the projection@ —E:a— m(a) = ais
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an injective mapping. Therefore, as a consequence, if the isotopic liftikgi®fnjective, thenr : E—E
will be an isomorphism.

3. Isogroups

Starting from the definition osogroup(see [2]), we give in this section some examples and properties of
them.

Definition 1 Let (G, o) be a group, with an associative inner layvand an unit element Anisogroup
Gis an isotopy of, now equipped with a new inner associative lawnd an unit eIerAnerftA, such that the
pair (G, o) verifies the axioms of a group. If, besidésg = Foa is verified for alla, 8 € G, then we say
that G is anisoabeliarisogroup orisocommutativésogroup.

See that this definition of isogroup is quite general. So, the unit element with respgatihich we
call isounit, is not, in general, the mentioned isounit in a Santilli's isotopy. However, when we do that
construction, we look after to make it in this way so that these two elements were the same. Moreover, the
fact of writing I in the place of, is not casual. If we follow the notation used just hétés the isotopic
lifting of e, but, in generalg is not the unit element df. It implies that notions, properties and theorems
studied in the initial structure cannot be applied in the new structure.

Let see it in the case that we have got a Santilli's isotopy, using a fixed isounit ataira To do it,
when we have the initial groufi, o), we consider the isounit (which does not belong t&' in general),
and we define the law which we want to work with. It is already known the model that we use to
construct the isotopic séf, by using the isounif and the law« (which is applied for any structure). So,

G={a=axI=al |acG}

Now, let see how to lift the associated law In the isotopic level, we define the new law as follows:

a8 = a/i\ﬁ, va, 3 € G. Therefore, in the level of projection, we define the new law as follaviss =
(a* 3) = I. The new law is calleésoproduct

We can show next that if we impose th@t, «) is an associative group withe G as the unit element
with respect tox, then(G,9) is an isogroup. To do it, we will see thatis an inner law which verifies the
axioms of a group.

Indeedya, 3,7 € G, we have:

a)ois an inner law forcs, sinceaSB = a/*\ﬁ € G, because 8 € G, due tox is an inner law forG by
hypothesis (remember th&®, «) must be a group).

b) (G83)37 = a 367 = (a % f) xv = a+ (3 +) = o5 * 7 = a8(557). (See thak is associative is
very important so that is associative).

C) = @, sincel € G. (See thatl = I « f). Moreover, I is the isounit that we search, because
aol = ax1=a= Ioa.

d) Leta € G be. Itwillbea € G. So, ag G, *) is a group with unit element, there existsr ! € G, such
thata xa~! = a~! xa = I. Then, we must only take the element?, as the isoinverse @f with respect

I~

to o, because then we have tligda—! = axa~{ = I = a~Ioa.

e) Finally, if « is commutative(G, 3) will be also commutative, becau§®j = a « 3 = 3 * a = 39a.
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So, we have proved the following:

Theorem 1 Let (G, o) be an associative group and l&tand * be two isotopy elements. (7, %) is
an associative group with unit elemehte G, then the isotopic Iiftinq@,a) constructed by the model
of the isoproduct, has an isostructure of isogroup. Moreove(if«) is commutative, the(@,a) is a
commutative isogroup. l

Now, we will see some examples of isogroups:

Example 1  Let (R, +) be the group of the real numbers with the usual sum. A trivial isotopic lifting
could be constructed by using the isoufit= 0 and the lawx = + (note thatR,*) = (R,+) is a
group with unit elemen® € R); so we would have the pa(lﬁ, T, whereR = {a=a*x0=a+0=
a | a € R} = R. Moreover, ast = +, the isoproduct would be defined @b = a+b = a+band

a3b=a+b=a+b. So, wewould have = * = +.

So, the isotopy of R, +), given by the isouni® and the lawx = -+, is the same as the trivial isotopy, that
is, the identity. It proves that the construction which we are using is right, since if we do not change either
the initial unit or the initial group law, then this group remains invariant when constructing the isotdipy.

Example 2 Now, let consider the isotopy of the grogR*, x) (R* is the real numbers set minus the
zero), obtained by using the isoutit= ¢ and the lawk = e (that is, by the usual complex law).

So, the isotopic set IR* = Im(C)\ {0} and the isoproduct will be defined asb=a+b=aeb=

axbforalla,b e R.Thenaxb=axb=axb=(axb)+i=(aebeiforala,bcR. M

Moreover, let see that the isogroups of the last two examples are isocommutative. It can be observed by
using Theorem 1, because we have that the initial groups are commutative.

Note that in both examples it has been used an isounit acting as a constant. However, examples in which
the isounit used depends on initial coordinates can be also shown;

Example 3  Letconside(R,+), as in Example 1. We consider an isotopic lifting with isotopy elements
_ >N 1,ifz=0

cpar = T O, Ifa:()
thellftlnga—>a—a*f—{ %,ifa;éo }
. . . ' o~ == 0,ifa+b=0
Finally, the isoproduct is defined @b = a + b, wherea+b = { aib, ifa+b40

tion level. In this way, the sef0} U {1 : « € R*} can be doted of an isogroup structure, by the faw
]

}. Then, is positive defined and non-singular and thus we obtain

} in the projec-

To finish this section we will prove that fixed and given an arbitrary isogroup, it can be considered as an
isotopic lifting which follows the isotopic construction model which we are considering. Indeed, we have
the following:
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Proposition 1  Every isotop : (G,0) — (@,6) can be considered as an isotopic lifting which follows
the isoproduct construction model.

PrROOF. Itis sufficient to consider in the general level the €&t ), wherex is defined byuxb = I~1 (683)
(it has sense, because the mapping & — E:a—disa bijection by construction, as we already
observed). So, the isolafcan be defined later @b = I(axb) = a + b, and this is the way in which an
isolaw is defined according to the isoproduct construction level, as we already saw.

In this way, we also get, by linearity, to dote the €t «) with a structure of group. Moreover, the
unit corresponding te will be, by construction, the element &f, from which the isounit of the associated
isolaw?® is isotopically lifted. W

4. Isosubgroups

In this section we introduce the definitionisbsubgroup We give some examples and properties of them
and we also deal with the differences between an isosubgroup and a subgroup of an isogroup.

We study next possible liftings of the subgroups, starting from the Santilli's construction model. To do
this, we must demand that an isosubgroup is the isotopic lifting of a subdfaffa given and fixed group
G. The difficulty appears when we require that every isotopic lifting of a given structure is also a structure
of the same type. So, every isotopy @fshould have structure of subgroup and thus, the isotopic liftings
of H could not be independent of the lifting &f. Therefore, the definition of isosubgroup would be as
follows:

Definition 2 Let (G, o) be an associative group ar((d? o) be an associated isogroup. L&t be a
subgroup ofG. We say t thatfl is an |sosubgroumf G if, belng an isotopy of{, the pa|r(H o)is a
subgroup o7, thatis, if H C G, 3 is an inner law inH and (H, ©) has structure of group.

Let apply now this definition to the Santilli's construction model, by an isounit and ala8uppose
that we have the associative gro{(®, o) and the isogrougG, 5), obtained by both, an isounitand a law
x previously fixed. Letd be a subgroup off. Since we demand that in the future isosubgrcﬁl,pthe
associated law i, if we go on about the given construction of the isoproduct, then the law and the isounit
(both which will be the isotopy elements), must be, respectivend I, because if not, we would not
obtain the same law in general. See it with an example:

Example 4  Let (Z,+) be the group of integers, with the usual sum. We take, under usual notations,
=+, [ =2.As(Z,x) = (Z,+) is a group with unit elemerit € Z, we can use the isotopy of elements

«andl. Then,Z = {a=a+2=a+2|a € Z} = Z and the isoproduct is defined @b = a + b, being

atb=a+b= (a+b)*2=a+b+2,foralla,b € Z. In this way, we have obtained the isogro@# +),
which comes from the additive gro(g, +).

Let now consider the subgrof, +) of even integers andl If we construct the isotopy related to the
same elements as above (which is always possible, d(,te) = (P, +) is a group with unit element
0 € P), we obtain firstly the isotopic s@®, beingP = {m=mx+2=m+2|mec P} =P, and we
would get after the same isoproduet

Let now prove tha(ﬁ T) is a isosubgroup o(fZ F), taking into consideration th& is an isotopy of
P C Z. To see it, we observe
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a)f’ - 2, sinceP C Z.
b) mF7n =m + n € P, forallm,n € P. So, ¥ is an inner law orP.

c) P satlsfles the group conditions, because assomatmty is (@ ®), the isounit/ = 2 = 0 belongs to
Pandm ! = Zm € P,Vm € P, sincemF—m =m+ (—m) = 0 = I = —m+m.

So, (P, F) is an isosubgroup iz, 7). ®

Note that in this example, we can avoid some steps when gonstrﬁtinmce it is proved that we
can make the isotopy corresponding to elements used to conétrutitdeed, remember that by using
Theorem 1, conditions to be satisfied are that the ([{ir«) is a group, having the unit elemehtthe same
of (G, ). So, if we proceed similarly as we did when proving tl(lél; had a group structure by the

isoproducto (obtained starting of), we have the conditions needeg: is an inner law orP, , the group
axioms are satisfied by construction and fma(l!y,, o) is associative due t@is associative on(uG, o), for
being it by hypothesis.

Therefore, it is proved the following:

Theorem 2  Let(G, ) be an associative group ar(d? o) be the associated isogroup corresponding to
the isotopy of elementfsand «. Let H be a subgroup of7. If (H, %) has structure of subgroup ¢&, *)

then the isotopic In‘tmg{H o), corresponding to the isotopy of elemefitand x, is a isosubgroup o
|

In fact, as the isogroup construction model already pointed out this condition, we can say that if the
isotopy corresponding td and can be made, thet‘H o) is an isosubgroup ofi. So, the last problem
which could appear is that such an isotopy could not be made for not verifying some initial conditions. We
will see it in the following example:

Example 5  Let consider the groupZ/Z,, +) with the usual law+-. Let write1 = 1 + Z/Z, and
2 =2+ Z/Z,. Consider now = 1 and the lawx defined by

1x1=1=0x0

1x0=0%x1=0.

It is easy to see thatis associative, due to:

1x1)x1=1x1=1x%(1x1)
1%1)*0=1x0=1x%(1%0)
150)%0=0%0=1=1%1=1%(0x0)
040)%0=1+0=0=0%1=0x(0x0)

whereas other possible cases are also satisfied by commutativity. The(@g¥e,, ) has structure of
group, with unitelement =7 =1 € Z/Z,.

Moreover, if we make now the isotopy correspondinﬁ tndx, we obtain that the isotopic setgz\z,
beingZ/Z, = {0 = 0,1 =1} = Z/Z,.
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Besides, the corresponding isoprodicivill be given by

070=0%0=1

So, we have:

1F1=151=1=1
Thus,+ = = and so,(ﬂz\z, F) is a new isogroup, bein@l//z\mi) =(Z2/Z,,%).

Let consider separately the subgray®}, +) of (Z/Z,,+). We observe that{0}, ) does not have
a structure of group, becauses not an inner law or{0}, due to0 « 0 = 1 ¢ {0}. So, conditions of
Theorem 2 to obtain an |sosubgroup by maklng the |sotopy of elefentl andx, are not satisfied. We

would have, in fact, tha{O} = {0}, where0F0 =1 ¢ {0} |

We are going to ask ourselves a new gquestion. Suppose that we have an associatiV& gspupith
unit element’, and Iet(@ 5) be the isogroup associated to the isotopy of elemeatsd+. We know that
every isosubgroup off has structure of subgroup. We also know some examples in which subgroups of
G do not give rise to isosubgroup 6, by using the samé and * like isotopy elements. Then, we can
finally ask if every subgroup off has a structure of |sosubgroup( ,0), that is, if it comes from the
isotopic lifting of a subgroup of7. Of course, we have already noted that if we fixe a subg(afﬂ;ﬁ) of
(@,8), then the laws has to be the same in both pairs, so the corresponding elements of isotopic have to
coincide. That is, ifff is an isosubgroup, then it have to come from an isotopy having the same elements
as the ones used in the constructiontof So, the only possible subset Gfwhich would give rise to the
possible isosubgroup would B¢ = {a € G : @ € H} C G. However, the paifH, o) is not a subgroup of
(G, o) in general, as we can check in the following:

Example 6  Let consider both the grouf%/Z,, +) and the isogroupZ//Z\2, T) mentioned in the last
example. We have the paif§0}, +) and({1}, T) respectively, as the only proper subgroups of both.

As we have just seen, if we take the subgrdiip= ({1}, F) of (z//z\2, F), the only possible subset of
Z/Z., from which we could give a structure of isogroupiiowould beH = {1}, becausd x1 = 1, where

T = 1is the isounit used in that example to construct the isotopy. Howé{E}, +) is not a subgroup of
(Z/Z.,+), because, for instance, is not an inner law of1},duetol +1=0. W

So, with this example, the last question above mentioned is answered in the negative. In this way, the
link between groups and isogroups is finally solved.



Isogroups and isosubgroups

5. Isorepresentation of finite isogroups

In this section we try to have some relations between Santilli's isotheory and the standard theory of repre-
sentation of groups.

Let us recall that a representation of a finite graus a pair(V, p), whereV’ is a vectork-space ang
is a group homomorphism: G — GI(V).

To generalize this concept on both isotopic and projection levels we firstly give the definiisrhof
momorphism of isogroupnd secondly, ofsorepresentation of finite isogroups

Definition 3 Let (G,0) and (G’, ¢) be two groups and Ie(t@,a) and (é\/,?) be associated isogroups,
respectively. Ansohomomorphisndefined betweety and G/ is the isotopic lifting of any mapping :
G — G, thatis,p: G — G' : § — p(g) = plyg), verifyingp(Goh) = p(G)en(h), forall P g, h € G.

Note that by demanding the compatibility of the lifting used, we obtaindlga groups homomorphism
with respect to the laws af andG’. To see it we firstly introduce the following result, which is easy to
prove:

Proposition 2 Let(G, o) be a group and@,a) an associated isogroup. @ has been obtained starting

from an isotopy compatible with respectddthat is,gaﬁ = g/o\h for all g,h € G), thenG andG are
isomorphic groups. O

Moreover, if we consider the isoproduct construction model (which is always possible), we deduce the
following:

Corollary 1 Under the hypothesis of Proposition 2, if the isotopy used follows the isoproduct construction
model, then we have, in the general level of the gr@®ip«), that (G, x) = (G, o).

PROOF
It is immediate by construction, because fixed and givédnc G, we havea «* b = aob = a o b. So,
axb=aob. N

It is now possible to prove the following:

Proposition 3  Under conditions of Definition 3, if the isotopy used to constiand G’ is compatible
with respect t@ ande, respectively, thep'is an isohomomorphism betwe€rand G’ if and only ifp is an
homomorphism betweé&r and G'.

PROOF

a) =
Let us suppose that: G — G’ is an isohomomorphism.

o~ o —

Then, fixedg, h € G, we havepm) = ﬁ(gﬁ\h) = ﬁ(§6ﬁ) = p(g)ep(h) = p(g) e p(h), and thus,

p(goh) = p(g) e p(h), which implies thap is an homomorphism, due toandh are arbitrary inG.
b) « ~

Let us suppose that: G — G’ is an homomorphism. Fixeglandh in G, we have thap(goh) =

ﬁ(ﬁ\h) =p(goh)=p(g)eph)= ﬁ(g)?ﬁ(ﬁ). So,p is an isohomomorphism. B
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Finally, we are going to deal with the concept of isohomomorphism in the level of projection.

Definition 4 Under conditions of Definition 3, if the isotopy used to constfand G’ is injective, we
say thatp : NG 73— 00)=p0Q) = p( )is amsohomomorphlsnh)etweerG andd.

Note that fixedj andh enG, we have thaB(3oh) = p(§oh) = 5(Goh) = p(G)sp(h) = p(5)ep(h). It
shows thap is indeed a groups homomorphism. Moreover, by construction, the following result is reached:

Proposition 4 LetG andG’ be two groups and let and G’ be the corresponding associated isogroups.
Then, we have:

=

a) Ifthe isotopic Ilftlng used to constru@ andG’ is injective, therp : G — 5 is an isohomomorphism
ifand only ifp : G Glisan isohomomorphism.

b) If such alifting is also compatible with respect to the lawgbandG’, then the following assertions
are equivalent:

b.1) pis a groups homomorphism in the conventional level.
b.2) pis an isogroups isohomomorphism in the isotopic level.

b.3) p is an isogroups isohomomorphism in the level of projectiol

Now, we can already introduce the definition of isorepresentation of a finite isogroup:

Definition 5 LetG be a finite groupk a field andV” a vectork- -space. LeG kandV be |sotop|c liftings
of the previous structures. Aaorepresentatlonf G is a pair (V p), wherep : G — GL( ) is an

isogroups isohomomorphism, wnthL( )= GL( )= {f VoV vﬂf() f(v)}.

If the |sotop|c lifting u used to construét and GL( ) is injective, arisorepresentatiomfé isa pair
(V p), wherep : G — GL( ) is an isogroups isohomomorphism in the level of projection, @mV)

GL(V).

Q

As a consequence of Proposition 4, it is immediate the following:
Corollary 2 Under conditions of Definition 5, we have:

a) If the isotopic lifting used to construét andéf(f/) is compatible with respect to the laws 6hand
GL(V), then(U, p) is an isorepresentation @¥ if and only if (V, p) is a representation ofr.

b) If such a lifting is injective, the(@, ) is a isorepresentation af if and only if(V, 7) is an isorep-
resentation of5. W

To finish the paper, we also try in the next section to set some links between this isotheory and the
standard groups theory, referred to equivalence relations defined on groups.
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6. Isotopically equivalent groups

In general, fixed and given an algebraic structiren isostructure associatétis characterized by verify-
ing the same axioms d&s. In this section, we give some results obtained when studying relations between
FE andE. Particularly, we deal with the case Bfbeing a group. We introduce the following:

Definition 6 A group(G, o) is isotopically relatedvith another grougG’, o) if (G, o) is the projection of
an isogroup(é\’,?) associated witfG’, e), that is, if (G, o) = (@\’,f).

It is easy to check that to demand the previous relation to be of equivalence, the projection mentioned
should be a groups isomorphism. So, we give another definition, which particularizes the previous one:

Definition 7 A group (G, o) is isotopically equivalento another group(G’, e) (it will be denoted by

~

(G,0) ~ (G, 9)), if it exists an isogrougG’, ®) associated witl{G’, o), such that:
8) (G,0) = (@3).
b) (G.0) = (G.3).

Note that as we always can use the isoproduct construction model to lift structures, the following result
can be proved:

Proposition 5 A group (G, o) is isotopically equivalent to another groug’, e) if and only if a lawsx
can be defined 06", in such a way thatG, o) and(G’, %) are isomorphic. O

Note that this relation defined on groups, consistingoerisotopically equivalenthat is, (G,0) ~
(G, e), does not implies, in general, th@¥, o) = (G’, ). However, it is easily verifiable that this relation
between groups is reflexive, symmetric and transitive and thus, it is an equivalence relation. It generalized
the relation of groups isomorphism.

Moreover, if we reduce this study to the particular case of finite groups, it can be proved the following:
Corollary 3 Two finite groupg G, o) and (G’, e) are isotopically equivalent if and only 7| = |G|,
where|G| denotes the cardinal of the grodp. O

To finish this section, we are going to deal briefly with an application of the previous concepts. We will
consider the symmetry groups of a planar figure.

When we sayplanar figurewe mean any subset of points belonging to Euclidean Plane. Every
planar figureF' is associated with its symmetry group, denotedSy Note, however, thatr can be the
symmetry group of more than one planar figure, in spit&eteing unique with respect tb. Therefore,
planar figures can be classified according to the symmetry group.

Another way to classify planar figures is by considering the relation of isotopically equivalence among
symmetry groups. To do this, we introduce the following:

Definition 8 Two planar figuresF and F’ are isotopically symmetrigor F' and F’ has isotopically
equivalent symmetries), if their respective symmetry gréipand S+ are isotopically equivalent.

The following result is an immediate consequence of the previous definition and the equivalence relation
of isotopically equivalent groups:

11
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Corollary 4 The relationbe isotopically symmetricefined on the set of planar figures is of equiva-
lence. B

Acknowledgement. Authors gratefully acknowledge Professor R. M. Santilli for the useful help
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